scholarly journals Phylogeny Best Explains Latitudinal Patterns of Xylem Tissue Fractions for Woody Angiosperm Species Across China

2019 ◽  
Vol 10 ◽  
Author(s):  
Jingming Zheng ◽  
Xia Zhao ◽  
Hugh Morris ◽  
Steven Jansen
2020 ◽  
Author(s):  
Min Wu ◽  
Ya Zhang ◽  
Thais Oya ◽  
Carmen Regina Marcati ◽  
Luciano Pereira ◽  
...  

AbstractAimsSince plants are compartmentalised organisms, failure of their hydraulic transport system could differ between organs. We test here whether xylem tissue of stems and roots differ in their drought-induced embolism resistance, and whether intact roots are equally resistant to embolism than root segments.MethodsEmbolism resistance of stem and root xylem was measured based on the pneumatic technique for Acer campestre, A. pseudoplatanus and Corylus avellana, comparing also intact roots and root segments of C. avellana. Moreover, we compared anatomical features such as interconduit pit membrane between roots and stems.ResultsWe found a higher embolism resistance for roots than stems, although a significant difference was only found for A. pseudoplatanus. Interconduit pit membrane thickness was similar for both organs of the two Acer species, but pit membranes were thicker in roots than stems of C. avellana. Also, embolism resistance of an intact root network was similar to thick root segments for C. avellana.ConclusionOur observations show that root xylem is not more vulnerable to embolism than stem xylem, although more species need to be studied to test if this finding can be generalised. We also demonstrated that the pneumatic method can be applied to non-terminal plant samples.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Krithika Ramchander ◽  
Megha Hegde ◽  
Anish Paul Antony ◽  
Luda Wang ◽  
Kendra Leith ◽  
...  

AbstractNaturally-occurring membranes in the xylem tissue of gymnosperm sapwood enable its use as an abundantly-available material to construct filters, with potential to facilitate access to safe drinking water in resource-constrained settings. However, the material’s behavior as a filter is poorly understood, and challenges such as short shelf life have not been addressed. Here, we characterize the operational attributes of xylem filters and show that the material exhibits a highly non-linear dependence of flow resistance on thickness upon drying, and a tendency for self-blocking. We develop guidelines for the design and fabrication of xylem filters, demonstrate gravity-operated filters with shelf life >2 years, and show that the filters can provide >3 log removal of E. coli, MS-2 phage, and rotavirus from synthetic test waters and coliform bacteria from contaminated spring, tap, and ground waters. Through interviews and workshops in India, we use a user-centric approach to design a prototype filtration device with daily- to weekly-replaceable xylem filters, and uncover indicators of social acceptance of xylem as a natural water filter. Our work enhances the understanding of xylem as a filtration material, and opens opportunities for engineering a diverse range of low-cost, biodegradable xylem-based filtration products on a global scale.


2017 ◽  
Vol 130 ◽  
pp. 96-106 ◽  
Author(s):  
Régis K. Gallon ◽  
Nicolas Lavesque ◽  
Jacques Grall ◽  
Céline Labrune ◽  
Antoine Gremare ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Martin Ehbrecht ◽  
Dominik Seidel ◽  
Peter Annighöfer ◽  
Holger Kreft ◽  
Michael Köhler ◽  
...  

AbstractThe complexity of forest structures plays a crucial role in regulating forest ecosystem functions and strongly influences biodiversity. Yet, knowledge of the global patterns and determinants of forest structural complexity remains scarce. Using a stand structural complexity index based on terrestrial laser scanning, we quantify the structural complexity of boreal, temperate, subtropical and tropical primary forests. We find that the global variation of forest structural complexity is largely explained by annual precipitation and precipitation seasonality (R² = 0.89). Using the structural complexity of primary forests as benchmark, we model the potential structural complexity across biomes and present a global map of the potential structural complexity of the earth´s forest ecoregions. Our analyses reveal distinct latitudinal patterns of forest structure and show that hotspots of high structural complexity coincide with hotspots of plant diversity. Considering the mechanistic underpinnings of forest structural complexity, our results suggest spatially contrasting changes of forest structure with climate change within and across biomes.


1973 ◽  
Vol 51 (2) ◽  
pp. 498-500 ◽  
Author(s):  
Donald M. Knutson

Bacteria (Erwinia, Bacillus) were consistently isolated from all samples of aspen sapwood and heartwood. In wetwood zones (water-soaked xylem tissue) or discolored heartwood, large populations often occur. No organisms unique to wetwood were isolated. Wetwood probably is formed by nonmicrobial means and, once formed, merely supports large populations of indigenous bacteria.


Oryx ◽  
2000 ◽  
Vol 34 (4) ◽  
pp. 275-286 ◽  
Author(s):  
Daoying Lan ◽  
Robin Dunbar

AbstractElevational and latitudinal patterns of species richness for birds and mammals were compared with human population density in relation to nature reserve designation in two areas of Yunnan Province, China. Results suggest that species richness is not the same for the two areas. In Gaoligongshan Region, species richness is inversely correlated with elevation and altitude, while reserve designation is positively correlated with elevation and latitude. In Jingdong County, reserve designations are positively correlated with elevation, but species richness shows no clear trends. In general, the present situation is strongly influenced by human activities. It appears that reserve designation is mismatched with species richness in Gaoligongshan Region, while there is a better fit between the two in Jingdong County. In both areas, however, it appeared that reserves were located primarily in order to reduce conflict with humans rather than to maximize conservation of biodiversity, probably because humans were responsible for forest—especially primary forest—destruction and degradation in the low-lying areas.


2012 ◽  
Vol 26 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Sean M. Gleason ◽  
Don W. Butler ◽  
Kasia Ziemińska ◽  
Paweł Waryszak ◽  
Mark Westoby

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5843-5858
Author(s):  
Seray Özden Keleş

The sapling stage is an important phase due to maintaining plant growth, stability, and survival over the life cycle of trees. However, there are limited investigations in the literature related to both growth and stability of different tree species. This study thus investigated how different tree species at the sapling stage showed different anatomical, morphological, and flexural traits despite being of similar age and growing under the same environmental conditions. The variation of sapling properties was determined in two deciduous tree species: common oak (Quercus robur L.) and Oriental beech (Fagus orientalis Lipsky). The results of anatomical and morphological measurements showed that the highest average values of ray length, ray width, pith radius, pith%, bark%, and node numbers were obtained in oak saplings, whereas average ring width, number of rays, and wood% were found to be higher in beech saplings. Oak also exhibited better functional stability in its saplings. The flexural properties were almost 60% greater in oak stems than beech stems. The variations in flexural properties were explained by the morphological and anatomical traits since stability was positively correlated with pith radius, pith%, and bark% and negatively correlated with the number of rays and wood%.


Sign in / Sign up

Export Citation Format

Share Document