scholarly journals Adult Plant Slow Rusting Genes Confer High Levels of Resistance to Rusts in Bread Wheat Cultivars From Mexico

2020 ◽  
Vol 11 ◽  
Author(s):  
Julio Huerta-Espino ◽  
Ravi Singh ◽  
Leonardo A. Crespo-Herrera ◽  
Héctor E. Villaseñor-Mir ◽  
Maria F. Rodriguez-Garcia ◽  
...  
2008 ◽  
Vol 98 (7) ◽  
pp. 803-809 ◽  
Author(s):  
Q. Guo ◽  
Z. J. Zhang ◽  
Y. B. Xu ◽  
G. H. Li ◽  
J. Feng ◽  
...  

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most damaging diseases of wheat (Triticum aestivum) globally. High-temperature adult-plant resistance (HTAPR) and slow-rusting have great potential for sustainable management of the disease. The wheat cultivars Luke and Aquileja have been previously reported to possess HTAPR and slow-rusting to stripe rust, respectively. Aquileja displayed less number of stripes per unit leaf area than Luke, while Luke showed lower infection type than Aquileja at adult-plant stages of growth under high-temperature conditions. The objectives of this study were to confirm the resistances and to map the resistance genes in Luke and Aquileja. Luke was crossed with Aquileja, and 326 of the F2 plants were genotyped using 282 microsatellite primer pairs. These F2 plants and their derived F3 families were evaluated for resistance to stripe rust by inoculation in the fields and greenhouses of high- and low-temperatures. Infection type was recorded for both seedlings and adult plants, and stripe number was recorded for adult plants only. Two quantitative trait loci (QTL) were identified, on the short arm of chromosome 2B, to be significantly associated with infection type at adult-plant stages in the fields and in the high-temperature greenhouse. The locus distal to centromere, referred to as QYrlu.cau-2BS1, and the locus proximal to centromere, referred to as QYrlu.cau-2BS2, were separated by a genetic distance of about 23 cM. QYrlu.cau-2BS1 was flanked by the microsatellite markers Xwmc154 and Xgwm148, and QYrlu.cau-2BS2 was flanked by Xgwm148 and Xabrc167. QYrlu.cau-2BS1 and QYrlu.cau-2BS2 explained up to 36.6 and 41.5% of the phenotypic variation of infection type, respectively, and up to 78.1% collectively. No significant interaction between the two loci was detected. Another QTL, referred to as QYraq.cau-2BL, was detected on the long arm of chromosome 2B to be significantly associated with stripe number. QYraq.cau-2BL was flanked by the microsatellite markers Xwmc175 and Xwmc332, and it explained up to 61.5% of the phenotypic variation of stripe number. It is possible that these three QTL are previously unmapped loci for resistance to stripe rust.


1977 ◽  
Vol 55 (11) ◽  
pp. 1539-1543 ◽  
Author(s):  
G. D. Statler ◽  
J. T. Nordgaard ◽  
J. E. Watkins

Several durum wheat (Triticitm durum) cultivars exhibiting susceptible or moderately susceptible reactions to the leaf rust fungus (Puccinia recondita tritici) were evaluated for slow rusting. Percentage severity and reactions for P. recondita tritici on each cultivar were evaluated periodically after initial infection. Logit analysis of disease progress curves was used to compare cultivars. The durum wheats consistently exhibited low rust severities in the field. The durums were always characterized by lower infection rates than the susceptible bread wheat cultivar Thatcher (Triticum aestivum). The area under the disease progress curve was smaller for the durum wheats than for Thatcher. The high correlation between apparent infection rate and the final rust severity indicated that final rust severity could be used as an indication of infection rate. The high correlation coefficient for the apparent infection rate between the two top leaves indicated that either leaf would provide an accurate evaluation of the cultivar. Yields of the durum wheat cultivars were not increased by controlling leaf rust. Yields of the susceptible bread wheat cultivar Thatcher were significantly increased by controlling leaf rust. The slow rusting displayed by the durum wheat cultivars studied apparently provide adequate protection against leaf rust under North Dakota conditions.


Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 457-463 ◽  
Author(s):  
Z. L. Wang ◽  
L. H. Li ◽  
Z. H. He ◽  
X. Y. Duan ◽  
Y. L. Zhou ◽  
...  

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a widespread wheat disease in China. Identification of race-specific genes and adult plant resistance (APR) is of major importance in breeding for an efficient genetic control strategy. The objectives of this study were to (i) identify genes that confer seedling resistance to powdery mildew in Chinese bread wheat cultivars and introductions used by breeding programs in China and (ii) evaluate their APR in the field. The results showed that (i) 98 of 192 tested wheat cultivars and lines appear to have one or more resistance genes to powdery mildew; (ii) Pm8 and Pm4b are the most common resistance genes in Chinese wheat cultivars, whereas Pm8 and Pm3d are present most frequently in wheat cultivars introduced from CIMMYT, the United States, and European countries; (iii) genotypes carrying Pm1, Pm3e, Pm5, and Pm7 were susceptible, whereas those carrying Pm12, Pm16, and Pm20 were highly resistant to almost all isolates of B. graminis f. sp. tritici tested; and (iv) 22 genotypes expressed APR. Our data showed that the area under the disease progress curve, maximum disease severity on the penultimate leaf, and the disease index are good indicators of the degree of APR in the field. It may be a good choice to combine major resistance genes and APR genes in wheat breeding to obtain effective resistance to powdery mildew.


2015 ◽  
Vol 6 (7) ◽  
pp. 997-1006
Author(s):  
M. Abdalla ◽  
Walaa Tawfik ◽  
A. Hagras ◽  
Nadia Mohamed ◽  
A. Ghanim ◽  
...  

Plant Disease ◽  
2001 ◽  
Vol 85 (2) ◽  
pp. 155-158 ◽  
Author(s):  
J. A. Kolmer

In 1998, leaf rust of wheat (Triticum aestivum), caused by Puccinia triticina, was widespread throughout the prairies of western Canada. Warm summer temperatures with frequent dew periods favored spread of the disease in wheat fields in Manitoba and Saskatchewan. The Canada Prairie Spring wheat cultivars (AC Vista, AC Foremost, AC Crystal) were susceptible to leaf rust, while the bread wheat cultivars with leaf rust resistance genes Lr16 and Lr13 or Lr34 (AC Majestic, AC Domain, AC Barrie) had high to moderate levels of leaf rust infections. Bread wheat cultivars AC Cora, AC Minto, Pasqua, and McKenzie had trace to low levels of leaf rust infection. Thirty-four virulence phenotypes of P. triticina were identified on 16 Thatcher lines, which are near-isogenic for leaf rust resistance genes. Phenotypes with virulence to Lr16 increased to 25% of isolates in Manitoba and Saskatchewan in 1998. Forty-three isolates were also tested for virulence to plants with the adult plant resistance genes Lr12, Lr13, Lr34, and Lr13,34. Most isolates had virulence to Lr12 and Lr13. All isolates had lower infection type on adult plants with Lr34 compared with Thatcher.


2019 ◽  
Vol 79 (01) ◽  
Author(s):  
T. L. Prakasha ◽  
S. Chand ◽  
A. N. Mishra ◽  
K. S. Solanki ◽  
J. B. Singh ◽  
...  

This study aimed to investigate the genetic basis of leafrust resistance in three bread wheat cultivars viz., MP 3288, HI 1418 and HI 784 which have been maintaining high levels of resistance to leaf rust since their release in 2011, 2000, and 1983, respectively. These cultivars also possess leaf tip necrosis phenotype. These were crossed with a susceptible bread wheat cultivar Lal Bahadur and also among themselves in non-reciprocal manner.The F1 , F2 and F3 populations were raised and the inheritance of leaf rust resistance was studied using prevalent and highly virulent Puccinia triticina pathotype 77-5 (121R63-1) during 2014- 17. These studies showed that the field (adult-plant) resistance of these cultivars is governed by two dominant genes each. Closely linked molecular markers L34DINT9F and L34PLUSR revealed the presence of non-race specific adult-plant leaf rust resistance gene Lr34 in all cultivars of present study. Absence of the other documented race nonspecific APR genes viz., Lr46, Lr67 and Lr68 was indicated in all the three test cultivars based on genotyping with closely linked molecular markers WMC44, CFD71 and csgs, respectively. The other dominant gene appears to be an allstage resistance gene since all the three cultivars displayed high levels of seedling resistance to the test pathotype. Stable resistance of these cultivars could be due to synergistic/additive or complementary effects resulting from the combination of Lr34 and the all-stage resistance gene.


Sign in / Sign up

Export Citation Format

Share Document