scholarly journals Genetic Gains in Pearl Millet in India: Insights Into Historic Breeding Strategies and Future Perspective

2021 ◽  
Vol 12 ◽  
Author(s):  
Om Parkash Yadav ◽  
S. K. Gupta ◽  
Mahalingam Govindaraj ◽  
Rajan Sharma ◽  
Rajeev K. Varshney ◽  
...  

Pearl millet (Pennisetum glaucum R. Br.) is an important staple and nutritious food crop in the semiarid and arid ecologies of South Asia (SA) and Sub-Saharan Africa (SSA). In view of climate change, depleting water resources, and widespread malnutrition, there is a need to accelerate the rate of genetic gains in pearl millet productivity. This review discusses past strategies and future approaches to accelerate genetic gains to meet future demand. Pearl millet breeding in India has historically evolved very comprehensively from open-pollinated varieties development to hybrid breeding. Availability of stable cytoplasmic male sterility system with adequate restorers and strategic use of genetic resources from India and SSA laid the strong foundation of hybrid breeding. Genetic and cytoplasmic diversification of hybrid parental lines, periodic replacement of hybrids, and breeding disease-resistant and stress-tolerant cultivars have been areas of very high priority. As a result, an annual yield increase of 4% has been realized in the last three decades. There is considerable scope to further accelerate the efforts on hybrid breeding for drought-prone areas in SA and SSA. Heterotic grouping of hybrid parental lines is essential to sustain long-term genetic gains. Time is now ripe for mainstreaming of the nutritional traits improvement in pearl millet breeding programs. New opportunities are emerging to improve the efficiency and precision of breeding. Development and application of high-throughput genomic tools, speed breeding, and precision phenotyping protocols need to be intensified to exploit a huge wealth of native genetic variation available in pearl millet to accelerate the genetic gains.

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1767
Author(s):  
Yoshihiro Hirooka ◽  
Simon K. Awala ◽  
Kudakwashe Hove ◽  
Pamwenafye I. Nanhapo ◽  
Morio Iijima

The production of pearl millet (Pennisetum glaucum (L.) R.Br.) is important in Namibia, in sub-Saharan Africa, owing to the prevailing low precipitation conditions. Most fields supporting crop production in northern Namibia are located in a network of seasonal wetlands. The aim of the present study was to evaluate the effects of ridging and fertilizer application on the yield and the growth of pearl millet in the seasonal wetlands under different rainfall conditions. The study was conducted for two years (2017–2018) in the experimental fields in northern Namibia, and yield, yield components, and growth parameters were evaluated in relation to the application of different fertilizers (manure and mineral) with and without ridge-furrows. Manure fertilizer application presented the highest yield in 2018, whereas mineral fertilizer application showed the highest yield in 2017. The proportion of rainfall was the highest during the mid-growth period in 2017, and the reproductive stage in 2018. Thus, pearl millet plants under manure fertilization overcame damage resulting from waterlogging stress during the seed setting stage by improving the soil and plant nutrient conditions. In contrast, the plants under mineral fertilization were more tolerant to large amounts of rain during the mid-growth period. In this study, yield was mainly determined by total dry weight, and it was closely related to panicle density in both years. Therefore, we concluded that fertilizer application, including additional fertilizer based on the growth diagnostic, could be important for improving crop production in seasonal wetlands.


Weed Science ◽  
2021 ◽  
pp. 1-19
Author(s):  
Olivier Dayou ◽  
Willy Kibet ◽  
Patroba Ojola ◽  
Prakash Irappa Gangashetty ◽  
Susann Wicke ◽  
...  

Abstract The parasitic plant purple witchweed [Striga hermonthica (Del.) Benth.] poses a serious threat to cereal production in sub-Saharan Africa. Under natural infestation, the wild pearl millet [Pennisetum glaucum (L.) R. Br.] line 29Aw demonstrates resistance against the parasite, but the mechanism of its resistance is unknown. Striga resistance can be due to: (i) low induction of Striga germination (pre-attachment resistance) or (ii) inhibition of parasite attachment and development (post-attachment resistance). Germination bioassays and root chamber (rhizotron) resistance screening assays were used to determine the extent of pre- and post-attachment Striga resistance in 29Aw compared with the Striga-susceptible SOSAT-C88-P10 variety. Regarding pre-attachment resistance, 29Aw stimulated 10-fold less Striga seed germination at a maximum germination distance of 7.96 ± 2.75 mm from the host root compared with 35.94 ± 2.88 mm in SOSAT-C88-P10. Post-attachment resistance revealed 10 to 19-fold fewer, 2.5-fold shorter, and 28-fold less Striga seedling biomass growing on 29Aw compared to SOSAT-C88-P10. Microscopic analysis showed that Striga penetration in 29Aw was blocked at endodermis and cortex levels. Post-attachment resistance in 29Aw was further supported by fewer (22%) Striga-host vascular connections in 29Aw compared to 79% in SOSAT-C88-P10. Together, these findings demonstrate that 29Aw harbors both pre- and post-attachment resistance mechanisms against S. hermonthica.


2021 ◽  
Author(s):  
M. Dube ◽  
N. Nyoni ◽  
S. Bhebhe ◽  
M. Maphosa ◽  
A. Bombom

Pearl millet [Pennisetum glaucum (L.) R. Br.] is an underutilized small grain, nutrient-rich cereal crop cultivated in the arid and semi-arid tropics of Asia and Africa. However, several barriers exist that preclude the full exploitation of the crop such as low yield, inadequate processing technologies, lack of extension support and limited productive varieties. Furthermore, anti-nutritional factors in the grain such as polyphenols reduce digestibility, palatability and bio-availability of other nutrients. Reduction or elimination of these anti-nutritional factors through pre-treatments like boiling, cooking, roasting, soaking improves the nutritional quality of the grain. Underutilized pearl millet genetic resources and processing has the potential to contribute towards sustainable agriculture particularly in drought prone and marginal areas of Africa. This review focuses on nutritional value, pearl millet cultivation and utilization challenges, processing and value addition interventions to improve crop adoption and productivity in sub-Saharan Africa.


Antiquity ◽  
2001 ◽  
Vol 75 (288) ◽  
pp. 341-348 ◽  
Author(s):  
A. C. D'Andrea ◽  
M. Klee ◽  
J. Casey

The remains of pearl millet (Pennisetum glaucum) dating to 3460±200 and 2960±370 BP have been recovered at the archaeological site of Birimi, northern Ghana, associated with the Kintampo cultural complex. This finding represents the earliest known occurrence of pearl millet in sub-Saharan Africa. Results indicate that Kintampo peoples developed effective subsistence adaptations to savannas as well as tropical forest habitats.


2020 ◽  
Vol 8 (11) ◽  
pp. 211-226
Author(s):  
Maman Sadi Souley ◽  
ADDAM KIARI SAIDOU ◽  
Boubé Morou ◽  
Jens B. Aune

Sida cordifolia L. (SC) is an invading species that represents a threat to grazing lands in Niger. In order to enhance this invasive species, we studied the use of this plant for compost-making. First, the study evaluated the development of chemical properties under aerobic composting of SC in pit (P) and in heap (H) composting with two different mixtures. Mixture 1 (M1) contained 75% SC, 20% manure and 5% ash, while mixture 2 (M2) contained 95% SC and 5% manure. Then, the phytotoxicity test of the composts obtained was carried out by evaluating the effects of four different concentrations of compost on germination of pearl millet. The study of the effect of the rates 1000 kg ha-1 and 1500 kg ha-1 (100g and 150 g hill-1) of the different composts on pearl millet yield under field conditions. The composting was undertaken at Molli fishery station and the agronomic tests at the N’Dounga experimental site during two seasons (2018 and 2019). The chemical analysis showed that the composts from M1 were richer in plant nutrients than the M2 composts. All four rates of composts gave germination rates beyond 50% independent of composting method or compost mixture. On both seasons, the 1000 kg ha-1 M1P gave the best result in terms of grain yield. In 2018, M1P treatment increased grain yield compared to the control by 652 kg ha-1 (105.2%), while in 2019, the corresponding yield increase was 812 kg ha-1 (118.02%). Application of 1000 kg M1 compost ha-1 corresponded to about 11.1 kg N ha-1, which is more than three times the amount of N applied when using the recommended rate of 20 kg NPK ha-1 as micro dosing. This result showed that compost of SC can be used as a supplement to mineral fertilizer for increasing pearl millet yield.


2019 ◽  
Vol 7 (11) ◽  
pp. 204-214
Author(s):  
Hassane Zakari ◽  
◽  
Riyazaddin Mohammed ◽  
Prakash Irappa Gangashetty ◽  
Mahalingam Govindaraj ◽  
...  

2021 ◽  
Author(s):  
Sonali Dutta ◽  
Felix T. Sattler ◽  
Anna Pucher ◽  
Drabo Inoussa ◽  
Ahmad Issaka ◽  
...  

Abstract Pearl millet [Pennisetum glaucum (L.) R. Br.] is an important food-security crop to smallholder farmers in West Africa (WA). Breeding for high yield and stability is a major challenge in the harsh environments of WA but could be tackled by hybrid breeding. Knowledge of combining ability patterns and quantitative-genetic parameters is required for an efficient development of hybrid varieties. Hence, our objectives were to estimate the combining ability of seven genetically diverse Sahelian pearl millet populations from Senegal, Mali, Benin, Burkina Faso, Niger, Sudan and Nigeria and the heterosis and stability of their 42 diallel-derived population hybrids to inform pearl millet hybrid breeding. The genotypes were evaluated in six environments in WA in 2007. Grain yield (GY) exhibited an average panmictic mid-parent heterosis (PMPH) of 24%, ranging from -1.51% to 64.69%. General combining ability (GCA) was significant across test environments as reflected by high heritability estimates and high GCA:SCA variance ratios. Thus, early selection for parental per se performance would be rewarding. The parental population from Sudan (IP8679) had strongly negative GCA for GY. Its lack of adaptation contributed to the predominance of additive effects in the present germplasm set. Parental populations PE02987 (Senegal), PE05344 (Mali) and ICMV IS 92222 (Niger) showed large positive GCA for GY. Their offspring, especially PE02987 × PE05344 and Kapelga × ICMV IS 92222, exhibited a high and stable GY across all test environments. Tapping the regional pearl millet genetic diversity seems therefore beneficial for hybrid breeding to increase pearl millet productivity in WA.


2017 ◽  
Vol 35 (10) ◽  
pp. 969-976 ◽  
Author(s):  
Rajeev K Varshney ◽  
Chengcheng Shi ◽  
Mahendar Thudi ◽  
Cedric Mariac ◽  
Jason Wallace ◽  
...  

Abstract Pearl millet [Cenchrus americanus (L.) Morrone] is a staple food for more than 90 million farmers in arid and semi-arid regions of sub-Saharan Africa, India and South Asia. We report the ∼1.79 Gb draft whole genome sequence of reference genotype Tift 23D2B1-P1-P5, which contains an estimated 38,579 genes. We highlight the substantial enrichment for wax biosynthesis genes, which may contribute to heat and drought tolerance in this crop. We resequenced and analyzed 994 pearl millet lines, enabling insights into population structure, genetic diversity and domestication. We use these resequencing data to establish marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance. We believe that these resources should empower researchers and breeders to improve this important staple crop.


1970 ◽  
Vol 28 (3) ◽  
pp. 411-420
Author(s):  
G. Kanfany ◽  
O. Diack ◽  
N.A. Kane ◽  
P. I. Gangashetty ◽  
O. Sy ◽  
...  

Pearl millet (Pennisetum glaucum L.) plays a critical role in smallholder food security in sub-Saharan Africa. The production of pearl millet has, however, stagnated or even declined due to several factors. The objective of this study was to assess farmer perceptions on production constraints and varietal preferences in Senegal. A survey was conducted involving 150 randomly selected farmers from 15 villages, in five representative rural communities of Senegal. A semi-structured questionnaire was used, supplemented by focus group discussions. Results revealed that parasitic Striga weed was the most constraining factor to pearl millet production across the rural communes. This was followed by low soil fertility and insect pests in that order. Other constraints included lack of machinery for sowing, plant diseases, drought, seed-eating birds, limited access to land for pearl millet cultivation and limited seed availability. Among the traits for varietal preference, farmers unanimously considered grain yield as the most important trait. Other important traits mentioned were adaptation to drought, adaptation to low soil fertility and earliness. These production constraints and varietal preference should be integrated in the profile of the national pearl millet breeding programmes in order to improve the productivity and adoption of bred-cultivars.


Sign in / Sign up

Export Citation Format

Share Document