scholarly journals Cytokinin Regulation of Source-Sink Relationships in Plant-Pathogen Interactions

2021 ◽  
Vol 12 ◽  
Author(s):  
Kathryn E. McIntyre ◽  
Daniel R. Bush ◽  
Cristiana T. Argueso

Cytokinins are plant hormones known for their role in mediating plant growth. First discovered for their ability to promote cell division, this class of hormones is now associated with many other cellular and physiological functions. One of these functions is the regulation of source-sink relationships, a tightly controlled process that is essential for proper plant growth and development. As discovered more recently, cytokinins are also important for the interaction of plants with pathogens, beneficial microbes and insects. Here, we review the importance of cytokinins in source-sink relationships in plants, with relation to both carbohydrates and amino acids, and highlight a possible function for this regulation in the context of plant biotic interactions.

2005 ◽  
Vol 53 (4) ◽  
pp. 377-384
Author(s):  
D. Szegő ◽  
E. Páldi ◽  
N. B. Loc ◽  
D. Lásztity

The plant hormones auxin, cytokinin and gibberellic acid, which stimulate plant growth and development, induce significant changes in the isoacceptor spectra of various tRNAs. The present experiments revealed that the treatment of wheat seedlings with auxin, cytokinin or gibberellic acid resulted in the appearance of new isoacceptors in the spectra of three tRNA groups specific for amino acids (methionine, tyrosine and valine). These new isoacceptors may be beneficial for the synthesis and regulation of the proteins induced by the plant hormones.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hammad Ishtiaq ◽  
Savita Bhardwaj ◽  
Aaliya Ashraf ◽  
Dhriti Kapoor

Plant growth regulators are significant chemical compounds which are synthesized inside the plant cells and play vital role in plant growth and development. Such compounds are usually active at very low concentrations. These plant growth regulators act as a signalling molecule, which influences the growth of plants. Throughout the previous year’s remarkable investigation have been done for understanding the synthesis of auxin and its effect on various physiological progressions. Auxin is a plant hormone that is involved in various physiological activities, including basic cellular processes such as cell enlargement, regulation of the cell cycle and distinction progress. Plants and several other microorganisms together produce auxin in order to carry out their cell cycle. The chemically synthesized auxins like NAA (naphthalene acetic acid) and IBA (Indole- butyric acid), also take part in various cellular processes. Against various types of biotic and abiotic stress conditions, these plant hormones significantly contribute in promoting acclimatization and adaptation in combination with other phytohormones. The present review highlights some of the important features of auxin role in regulation of plant growth either alone or in crosstalk with other plant hormones.


2020 ◽  
Vol 295 (25) ◽  
pp. 8442-8448
Author(s):  
Maria João Pimenta Lange ◽  
Manuela Szperlinski ◽  
Leon Kalix ◽  
Theo Lange

Bioactive gibberellins (GAs) are central regulators of plant growth and development, including seed development. GA homeostasis is achieved via complex biosynthetic and catabolic pathways, whose exact activities remain to be elucidated. Here, we isolated two cDNAs from mature or imbibed cucumber seeds with high sequence similarity to known GA 3-oxidases. We found that one enzyme (designated here CsGA3ox5) has GA 3-oxidation activity. However, the second enzyme (designated CsGA1ox/ds) performed multiple reactions, including 1β-oxidation and 9,11-desaturation of GAs, but was lacking the 3-oxidation activity. CsGA1ox/ds overexpression in Arabidopsis plants resulted in severely dwarfed plants that could be rescued by the exogenous application of bioactive GA4, confirming that CsGA1ox/ds catabolizes GAs. Substitution of three amino acids in CsGA1ox/ds, Phe93, Pro106, and Ser202, with those typically conserved among GA 3-oxidases, Tyr93, Met106, and Thr202, respectively, conferred GA 3-oxidase activity to CsGA1ox/ds and thereby augmented its potential to form bioactive GAs in addition to catabolic products. Accordingly, overexpression of this amino acid–modified GA1ox/ds variant in Arabidopsis accelerated plant growth and development, indicating that this enzyme variant can produce bioactive GAs in planta. Furthermore, a genetically modified GA3ox5 variant in which these three canonical GA 3-oxidase amino acids were changed to the ones present in CsGA1ox/ds was unable to convert GA9 to GA4, highlighting the importance of these three conserved amino acids for GA 3-oxidase activity.


2007 ◽  
Vol 49 (4) ◽  
pp. 629-640 ◽  
Author(s):  
Jie Yang ◽  
Harjinder S. Sardar ◽  
Kathleen R. McGovern ◽  
Yizhu Zhang ◽  
Allan M. Showalter

2012 ◽  
Vol 10 (3) ◽  
pp. 28-40
Author(s):  
Varvara E Tvorogova ◽  
Maria A Osipova ◽  
Irina E Dodueva ◽  
Ludmila A Lutova

Plant growth and development are controlled by large regulatory network which modulates activity of special groups of cells — apical meristems. This control is performed by means of phytohormones and transcriptional factors, the regulators of gene expression. In this review principal transcriptional factors regulating plant apical meristems are described, and the data are presented about their interactions with the most important plant hormones, auxins, cytokinins and gibberellins. General tendencies of these interactions are depicted.


Sign in / Sign up

Export Citation Format

Share Document