scholarly journals Introduction of the Carotenoid Biosynthesis α-Branch Into Synechocystis sp. PCC 6803 for Lutein Production

2021 ◽  
Vol 12 ◽  
Author(s):  
Martin Lehmann ◽  
Evgenia Vamvaka ◽  
Alejandro Torrado ◽  
Peter Jahns ◽  
Marcel Dann ◽  
...  

Lutein, made by the α-branch of the methyl-erythritol phosphate (MEP) pathway, is one of the most abundant xanthophylls in plants. It is involved in the structural stabilization of light-harvesting complexes, transfer of excitation energy to chlorophylls and photoprotection. In contrast, lutein and the α-branch of the MEP pathway are not present in cyanobacteria. In this study, we genetically engineered the cyanobacterium Synechocystis for the missing MEP α-branch resulting in lutein accumulation. A cassette comprising four Arabidopsis thaliana genes coding for two lycopene cyclases (AtLCYe and AtLCYb) and two hydroxylases (AtCYP97A and AtCYP97C) was introduced into a Synechocystis strain that lacks the endogenous, cyanobacterial lycopene cyclase cruA. The resulting synlut strain showed wild-type growth and only moderate changes in total pigment composition under mixotrophic conditions, indicating that the cruA deficiency can be complemented by Arabidopsis lycopene cyclases leaving the endogenous β-branch intact. A combination of liquid chromatography, UV-Vis detection and mass spectrometry confirmed a low but distinct synthesis of lutein at rates of 4.8 ± 1.5 nmol per liter culture at OD730 (1.03 ± 0.47 mmol mol–1 chlorophyll). In conclusion, synlut provides a suitable platform to study the α-branch of the plastidic MEP pathway and other functions related to lutein in a cyanobacterial host system.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sivamoke Dissook ◽  
Tomohisa Kuzuyama ◽  
Yuri Nishimoto ◽  
Shigeru Kitani ◽  
Sastia Putri ◽  
...  

AbstractMethyl erythritol phosphate (MEP) is the metabolite found in the MEP pathway for isoprenoid biosynthesis, which is known to be utilized by plants, algae, and bacteria. In this study, an unprecedented observation was found in the oleaginous yeast Yarrowia lipolytica, in which one of the chromatographic peaks was annotated as MEP when cultivated in the nitrogen limiting condition. This finding raised an interesting hypothesis of whether Y. lipolytica utilizes the MEP pathway for isoprenoid biosynthesis or not, because there is no report of yeast harboring the MEP pathway. Three independent approaches were used to investigate the existence of the MEP pathway in Y. lipolytica; the spiking of the authentic standard, the MEP pathway inhibitor, and the 13C labeling incorporation analysis. The study suggested that the mevalonate and MEP pathways co-exist in Y. lipolytica and the nitrogen limiting condition triggers the utilization of the MEP pathway in Y. lipolytica.


1993 ◽  
Vol 48 (7-8) ◽  
pp. 570-574 ◽  
Author(s):  
Gerhard Sandmann

Synthesis of carotenoids is photoregulated in many fungi including Neurospora crassa. In order to investigate the regulatory mechanism at the enzyme level, several carotenoid mutants of Neurospora were used to determine the activities of enzymes involved in the carotenoid bio synthetic pathway after growth under illumination or in darkness. Light stimulation of carotenoid formation was due to enhanced activities of three subsequent enzymes, geranylgeranyl pyrophosphate synthase, phytoene synthase, and phytoene desaturase indicating a coordinated regulation at the enzyme level. Farnesyl pyrophosphate synthase and lycopene cyclase were not involved in light regulation. Immunological studies showed that in the case of phytoene desaturase higher activity in the light originated from an increased amount of this enzyme in light-grown cultures.


Author(s):  
Olga Gaidarenko ◽  
Dylan W. Mills ◽  
Maria Vernet ◽  
Mark Hildebrand

ABSTRACTDespite the ubiquity and ecological importance of diatoms, much remains to be understood about their physiology and metabolism, including their carotenoid biosynthesis pathway. Early carotenoid biosynthesis steps are well-conserved, while the identity of the enzymes that catalyze the later steps and their order remain unclear. Those steps lead to the biosynthesis of the final pathway products: the main accessory light-harvesting pigment fucoxanthin (Fx) and the main photoprotective pigment pool comprised of diadinoxanthin (Ddx) and its reversibly de-epoxidized form diatoxanthin (Dtx). We used sequence comparison to known carotenoid biosynthesis enzymes to identify novel candidates in the diatom Thalassiosira pseudonana. Microarray and RNA-seq data was used to select candidates with transcriptomic responses similar to known carotenoid biosynthesis genes and to create full-length gene models, and we focused on those that encode proteins predicted to be chloroplast-localized. We identified a violaxanthin de-epoxidase-like gene (Thaps3_11707, VDL2) that when overexpressed results in increased Fx abundance while stoichiometrically reducing Ddx+Dtx. Based on transcriptomics, we hypothesize that Thaps3_10233 may also contribute to Fx biosynthesis, in addition to VDL2. Separately using antisense RNA to target VDL2, VDL1, and both LUT1-like copies (hypothesized to catalyze an earlier step in the pathway) simultaneously, reduced the overall cellular photosynthetic pigment content, including chlorophylls, suggesting destabilization of light-harvesting complexes by Fx deficiency. Based on transcriptomic and physiological data, we hypothesize that the two predicted T. pseudonana zeaxanthin epoxidases have distinct functions and that different copies of phytoene synthase and phytoene desaturase may serve to initiate carotenoid biosynthesis in response to different cellular needs. Finally, nine carotene cis/trans isomerase (CRTISO) candidates identified based on sequence identity to known CRTISO proteins were narrowed to two most likely to be part of the T. pseudonana carotenoid biosynthesis pathway based on transcriptomic responses and predicted chloroplast targeting.


1992 ◽  
Author(s):  
John Shaw ◽  
Arieh Rosner ◽  
Thomas Pirone ◽  
Benjamin Raccah ◽  
Yehezkiel Antignus

In this research we have studied the molecular biology of carotenoid biosynthesis in tomato. The investigations focused on the genes Pds and Psy, encoding desaturase and phytoene synthase, respectively, which are key enzymes in the biosynthetic pathway of lycopene and b-carotene. In addition, we have investigated the genes for lycopene cyclase. We have cloned from tomato and characterized the cDNA of CrtL-e, which encodes the lycopene e-cyclase, and analyzed its expression during fruit development. The results establish a paradigm for the regulation of carotenoid pigment biosynthesis during the ripening process of fruits. It is concluded that transcriptional regulation of genes that encode carotenoid-biosynthesis enzymes is the major mechanism that governs specific pigment accumulation. During the ripening of tomato fruits transcription of the genes encoding the enzymes phytoene synthase and phytoene desaturase is up-regulated, while the transcription of the genes for both lycopene cyclases decreases and thus the conversion of lycopene to subsequent carotenoids is inhibited. These findings support the working hypothesis of the molecular approach to manipulating carotenogenesis by altering gene expression in transgenic plants, and offer obvious strategies to future application in agriculture. The molecular and physiological knowledge on carotenogenesis gained in this project, suggest a concept for manipulating gene expression that will alter carotenoid composition in fruits and flowers.


1993 ◽  
Author(s):  
Joseph Hirschberg ◽  
Gloria A. Moore

In this research we have studied the molecular biology of carotenoid biosynthesis in tomato. The investigations focused on the genes Pds and Psy, encoding desaturase and phytoene synthase, respectively, which are key enzymes in the biosynthetic pathway of lycopene and b-carotene. In addition, we have investigated the genes for lycopene cyclase. We have cloned from tomato and characterized the cDNA of CrtL-e, which encodes the lycopene e-cyclase, and analyzed its expression during fruit development. The results establish a paradigm for the regulation of carotenoid pigment biosynthesis during the ripening process of fruits. It is concluded that transcriptional regulation of genes that encode carotenoid-biosynthesis enzymes is the major mechanism that governs specific pigment accumulation. During the ripening of tomato fruits transcription of the genes encoding the enzymes phytoene synthase and phytoene desaturase is up-regulated, while the transcription of the genes for both lycopene cyclases decreases and thus the conversion of lycopene to subsequent carotenoids is inhibited. These findings support the working hypothesis of the molecular approach to manipulating carotenogenesis by altering gene expression in transgenic plants, and offer obvious strategies to future application in agriculture. The molecular and physiological knowledge on carotenogenesis gained in this project, suggest a concept for manipulating gene expression that will alter carotenoid composition in fruits and flowers.


2007 ◽  
Vol 21 (4) ◽  
pp. 947-953 ◽  
Author(s):  
Gregory R. Armel ◽  
Patrick L. Rardon ◽  
Michael C. McComrick ◽  
Nancy M. Ferry

Greenhouse studies were conducted in 2003 at the Stine–Haskell Research Center to determine whether herbicide inhibitors of six specific sites in the carotenoid biosynthesis pathway would elicit synergistic responses when applied postemergence (POST) in combination with the photosystem II (PSII) inhibitor atrazine. Based on data analysis with the Isobole method, synergistic responses were observed on red morningglory, common cocklebur, and giant foxtail when atrazine was applied in mixtures with the deoxy-D-xylulose-5-phosphate reductoisomerase (DOXP reductoisomerase) inhibitor fosmidomycin, thep-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor mesotrione, and the DuPont proprietary zeta-carotene desaturase (ZDS) inhibitor DFPC. Clomazone (its metabolite ketoclomazone is the actual enzyme inhibitor), an inhibitor of 1-deoxy-D-xylulose-5-phosphate synthatase (DOXP synthase), provided synergistic responses on red morningglory, but antagonistic responses on both common cocklebur and giant foxtail when applied in mixtures with atrazine. Combinations of the lycopene cyclase (LC) inhibitor, CPTA, with atrazine produced synergistic responses on both common cocklebur and giant foxtail but were antagonistic on red morningglory. Norflurazon, a phytoene desaturase (PDS) inhibitor, applied in mixtures with atrazine provided synergistic responses on red morningglory, antagonistic responses on giant foxtail, and independent responses on common cocklebur. Because carotenoids have been determined to play a key role in quenching singlet oxygen species in the chloroplast and also assist in the maintenance of the D1 protein in PSII, this might help explain the synergistic responses with atrazine observed in our studies.


Sign in / Sign up

Export Citation Format

Share Document