pigment accumulation
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 33)

H-INDEX

22
(FIVE YEARS 3)

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 112
Author(s):  
Anastasiya Glagoleva ◽  
Tatjana Kukoeva ◽  
Sergey Mursalimov ◽  
Elena Khlestkina ◽  
Olesya Shoeva

Anthocyanins and melanins are phenolic pigments of plants and accumulate in seed envelopes of the barley grain, thereby giving them a blue, purple, or black color. To explore the effects of combined accumulation of anthocyanins and melanins in the grain, a barley near-isogenic line (NIL), characterized by simultaneous accumulation in both pigments, was developed using a marker-assisted approach. The presence of both pigments in the grain pericarp was evaluated by light microscopy. Emergence of anthocyanin pigmentation proved to be temporally separated from that of melanin, and the formation of anthocyanin pigments began at an earlier stage of spike maturation. During spike maturation, a significantly higher total anthocyanin content was noted in the created NIL than in the parental anthocyanin-accumulating NIL, indicating a positive influence of the Blp1 gene on the anthocyanin content at some developmental stages. In a comparative analysis of yield components, it was found that the observed differences between the barley NILs are possibly caused by environmental factors, and the presence of pigments does not decrease plant productivity. Our results should facilitate investigation into genetic mechanisms underlying overlaps in the biosynthesis of pigments and into breeding strategies aimed at the enrichment of barley varieties with polyphenols.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 866
Author(s):  
Willian Capa-Robles ◽  
Ernesto García-Mendoza ◽  
José de Jesús Paniagua-Michel

Current mixotrophic culture systems for Dunaliella salina have technical limitations to achieve high growth and productivity. The purpose of this study was to optimize the mixotrophic conditions imposed by glycerol, light, and salinity that lead to the highest biomass and β-carotene yields in D. salina. The combination of 12.5 mM glycerol, 3.0 M salinity, and 50 μmol photons m−2 s−1 light intensity enabled significant assimilation of glycerol by D. salina and consequently enhanced growth (2.1 × 106 cell mL−1) and β-carotene accumulation (4.43 pg cell−1). The saline and light shock induced the assimilation of glycerol by this microalga. At last stage of growth, the increase in light intensity (300 μmol photons m−2 s−1) caused the β-carotene to reach values higher than 30 pg cell−1 and tripled the β-carotene values obtained from photoautotrophic cultures using the same light intensity. Increasing the salt concentration from 1.5 to 3.0 M NaCl (non-isosmotic salinity) produced higher growth and microalgal β-carotene than the isosmotic salinity 3.0 M NaCl. The mixotrophic strategy developed in this work is evidenced in the metabolic capability of D. salina to use both photosynthesis and organic carbon, viz., glycerol that leads to higher biomass and β-carotene productivity than that of an either phototrophic or heterotrophic process alone. The findings provide insights into the key role of exogenous glycerol with a strategic combination of salinity and light, which evidenced unknown roles of this polyol other than that in osmoregulation, mainly on the growth, pigment accumulation, and carotenogenesis of D. salina.


Author(s):  
Liqun Ma ◽  
Ni Zeng ◽  
Ke Cheng ◽  
Jinyan Li ◽  
Keru Wang ◽  
...  

Abstract The tomato fruit of green-flesh (gf) mutant ripen to a muddy brown color and has been demonstrated previously to be a loss-of-function mutant. Here, we provide more evidence to support this view that SlSGR1 involved in color change in ripening tomato fruits. Knocking out SlSGR1 expression using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 genome editing strategy showed obviously a muddy brown color with significantly higher chlorophyll and carotenoid content compared with WT fruits. To further verify the role of SlSGR1 in fruit color change, we performed RNA-seq analysis, where a total of 354 differentially expressed genes (124/230 down-/upregulated) were identified between WT and slsgr1. Additionally, the expression of numerous genes associated with photosynthesis and chloroplast function changed significantly when SlSGR1 was knocked out. Taken together, these results indicate that SlSGR1 is involved color change in ripening fruit via chlorophyll degradation and carotenoid biosynthesis.


2021 ◽  
Author(s):  
Roman Podolec ◽  
Timothee B. Wagnon ◽  
Manuela Leonardelli ◽  
Henrik Johansson ◽  
Roman Ulm

Plants undergo photomorphogenic development in the presence of light. Photomorphogenesis is repressed by the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), which binds substrates through their valine-proline (VP) motifs. The UV RESISTANCE LOCUS8 (UVR8) photoreceptor senses UV-B and inhibits COP1 through cooperative binding of its own VP motif mimicry and its photosensing core to COP1, thereby preventing COP1 binding to substrates, including the bZIP transcriptional regulator ELONGATED HYPOCOTYL5 (HY5). As a key promoter of visible light and UV-B photomorphogenesis, HY5 functions together with the B-box family transcription factors BBX20-22 that were recently described as HY5 rate-limiting coactivators under red light. Here we describe a hypermorphic bbx21-3D mutant with enhanced photomorphogenesis, which carries a proline-314 to leucine mutation in the VP motif that impairs interaction with and regulation through COP1. We show that BBX21 and BBX22 are UVR8-dependently stabilized after UV-B exposure, which is counteracted by a repressor induced by HY5/BBX activity. bbx20 bbx21 bbx22 mutants under UV-B are impaired in hypocotyl growth inhibition, photoprotective pigment accumulation, and expression of several HY5-dependent genes. We conclude that BBX20-22 importantly contribute to HY5 activity in a subset of UV-B responses, but that additional, presently unknown coactivators for HY5 are functional in early UVR8 signaling.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhuang Zhou ◽  
Zhen Ying ◽  
Zhigang Wu ◽  
Yanping Yang ◽  
Shuangbin Fu ◽  
...  

The Orchidaceae, otherwise known as orchids, is one of the largest plant families and is renowned for its spectacular flowers and ecological adaptations. Various polymorphisms of orchid flower colour can attract pollinators and be recognised as valuable horticultural ornamentals. As one of the longest historic cultured orchids, Cymbidium kanran has been domesticated for more than 2,500 years and is an ideal species to study coloration mechanisms because of plentiful variations in floral coloration and abundant traditional varieties. In this study, we used two distinct colour-type flowers of C. kanran as experimental materials to elucidate the mechanism of flower coloration. High-performance liquid chromatography (HPLC) analysis revealed that anthocyanins in purple-red-type flowers include three types of anthocyanidin aglycones, peonidin, malvidin, and cyanidin, whereas anthocyanins are lacking in white-type flowers. Through comparative transcriptome sequencing, 102 candidate genes were identified as putative homologues of colour-related genes. Based on comprehensive correlation analysis between colour-related compounds and gene expression profiles, four candidates from 102 captured genes showed a positive correlation with anthocyanidin biosynthesis. Furthermore, transient expression of CkCHS-1, CkDFR, and CkANS by particle bombardment confirmed that recovery of their expression completed the anthocyanin pathway and produced anthocyanin compounds in white-type flowers. Collectively, this study provided a comprehensive transcriptomic dataset for Cymbidium, which significantly facilitate our understanding of the molecular mechanisms of regulating floral pigment accumulation in orchids.


2021 ◽  
Author(s):  
Isabel Schumacher ◽  
Damian Menghini ◽  
Serguei Ovinnikov ◽  
Mareike Hauenstein ◽  
Nick Fankhauser ◽  
...  

AbstractColonization of land by green plants (Viridiplantae) some 500 million years ago was made possible by large metabolic and biochemical adaptations. Chlorophyll, the central pigment of photosynthesis, is highly photo-active. In order to mitigate deleterious effects of pigment accumulation, some plants have evolved a coordinated pathway to deal with chlorophyll degradation end-products, so-called phyllobilins. This pathway has been so far mostly unravelled in Arabidopsis thaliana. Here, large-scale comparative phylogenomic coupled to an innovative biochemical characterization strategy of phyllobilins allow a better understanding how such a pathway appeared in Viridiplantae. Our analysis reveals a stepwise evolution of the canonical pheophorbide a monooxygenase/phyllobilin pathway. It appears to have evolved gradually, first in chlorophyte’s chloroplasts, to ensure multicellularity by detoxifying chlorophyll catabolites, and in charophytes outside chloroplasts to allow adaptation of embryophytes to land. At least six out of the eight genes involved in the pathway were already present in the last common ancestor of green plants. This strongly suggests parallel evolution of distinct enzymes catalysing similar reactions in various lineages, particularly for the dephytylation step. Together, our study suggests that chlorophyll degradation accompanied the transition from water to land, and was therefore of great importance for plant diversification.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Qiqin Xue ◽  
Xiurong Zhang ◽  
Hui Yang ◽  
Huadong Li ◽  
Yuying Lv ◽  
...  

Peanut (Arachis hypogaea L.) is an important source of oil and food around the world, and the testa color affects its appearance and commercial value. However, few studies focused on the mechanism of pigment formation in peanut testa. In this study, cultivars Shanhua 15 with pink testa and Zhonghua 12 with red testa were used as materials to perform the combined analysis of transcriptome and metabolome. A total of 198 flavonoid metabolites were detected, among which petunidin 3-O-glucoside and cyanidin O-acetylhexoside in Zhonghua12 were 15.23 and 14.72 times higher than those of Shanhua 15 at the R7 stage, revealing the anthocyanins underlying the red testa. Transcriptome analysis showed that there were 6059 and 3153 differentially expressed genes between Shanhua 15 and Zhonghua 12 in different growth periods, respectively. These differentially expressed genes were significantly enriched in the flavonoid biosynthesis, biosynthesis of secondary metabolites, and metabolic pathways. Integrated analysis of transcriptome and metabolome indicated CHS gene (arahy.CM90T6), F3 ′ H genes (arahy. 8F7PE4 and arahy. K8H9R8), and DFR genes (arahy. LDV9QN and arahy. X8EVF3) may be the key functional genes controlling the formation of pink and red testa in peanut. Transcription factors MYB (arahy.A2IWKV, arahy.US2SKM, arahy.SJGE27, arahy.H8DJRL, and arahy.PR7AYB), bHLH (arahy.26781N, arahy.HM1IVV, and arahy.MP3D3D), and WD40 (arahy.L6JJW9) in the biosynthetic pathway of anthocyanin were significantly upregulated in Zhonghua 12 which may be the key regulatory genes in testa pigment formation. This is a comprehensive analysis on flavonoid metabolites and related genes expression in peanut testa, providing reference for revealing the regulatory mechanism of pigment accumulation in peanut testa.


Author(s):  
Mahlisha Kazemi ◽  
Hamid Rabie ◽  
Mohammadhasan Sharafi

Background: Ochronotic arthropathy is a rare complication in patients with alkaptonuria (AKU) that occurs as a result of ochronotic pigment accumulation in the joints. Case Report: This case report presents a 54-year-old patient with severe degenerative arthritis who underwent total hip arthroplasty on both sides within an interval of three years. The diagnosis was made by observation of a dark capsule and femoral head during the second surgery. The surgical treatments significantly reduced the pain and improved the range of motion (ROM). Conclusion: Orthopedic surgeons must be vigilant about clinical manifestations of this rare condition, before and during the surgery. Arthroplasty is a favourable therapeutic option in patients suffering from ochronotic arthropathy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yan Xia ◽  
Weiwei Chen ◽  
Weibo Xiang ◽  
Dan Wang ◽  
Baogui Xue ◽  
...  

Abstract Background Plants have remarkable diversity in petal colour through the biosynthesis and accumulation of various pigments. To better understand the mechanisms regulating petal pigmentation in Lonicera japonica, we used multiple approaches to investigate the changes in carotenoids, anthocyanins, endogenous hormones and gene expression dynamics during petal colour transitions, i.e., green bud petals (GB_Pe), white flower petals (WF_Pe) and yellow flower petals (YF_Pe). Results Metabolome analysis showed that YF_Pe contained a much higher content of carotenoids than GB_Pe and WF_Pe, with α-carotene, zeaxanthin, violaxanthin and γ-carotene identified as the major carotenoid compounds in YF_Pe. Comparative transcriptome analysis revealed that the key differentially expressed genes (DEGs) involved in carotenoid biosynthesis, such as phytoene synthase, phytoene desaturase and ζ-carotene desaturase, were significantly upregulated in YF_Pe. The results indicated that upregulated carotenoid concentrations and carotenoid biosynthesis-related genes predominantly promote colour transition. Meanwhile, two anthocyanins (pelargonidin and cyanidin) were significantly increased in YF_Pe, and the expression level of an anthocyanidin synthase gene was significantly upregulated, suggesting that anthocyanins may contribute to vivid yellow colour in YF_Pe. Furthermore, analyses of changes in indoleacetic acid, zeatin riboside, gibberellic acid, brassinosteroid (BR), methyl jasmonate and abscisic acid (ABA) levels indicated that colour transitions are regulated by endogenous hormones. The DEGs involved in the auxin, cytokinin, gibberellin, BR, jasmonic acid and ABA signalling pathways were enriched and associated with petal colour transitions. Conclusion Our results provide global insight into the pigment accumulation and the regulatory mechanisms underlying petal colour transitions during the flower development process in L. japonica.


2021 ◽  
Vol 22 (3) ◽  
pp. 1494
Author(s):  
Chen Chen ◽  
Geng Zhou ◽  
Juan Chen ◽  
Xiaohong Liu ◽  
Xiangyang Lu ◽  
...  

Yellow peel will adversely affect the appearance quality of cucumber fruit, but the metabolites and the molecular mechanism of pigment accumulation in cucumber peel remain unclear. Flavonoid metabolome and transcriptome analyses were carried out on the young peel and old peel of the color mutant L19 and the near-isogenic line L14. The results showed that there were 165 differential flavonoid metabolites in the old peel between L14 and L19. The total content of representative flavonoid metabolites in the old peel of L14 was 95 times that of L19, and 35 times that of young peel of L14, respectively. This might explain the difference of pigment accumulation in yellow peel. Furthermore, transcriptome analysis showed that there were 3396 and 1115 differentially expressed genes in the yellow color difference group (Young L14 vs. Old L14 and Old L14 vs. Old L19), respectively. These differentially expressed genes were significantly enriched in the MAPK signaling pathway–plant, plant–pathogen interaction, flavonoid biosynthesis and cutin, suberine and wax biosynthesis pathways. By analyzing the correlation between differential metabolites and differentially expressed genes, six candidate genes related to the synthesis of glycitein, kaempferol and homoeriodictyol are potentially important. In addition, four key transcription factors that belong to R2R3-MYB, bHLH51 and WRKY23 might be the major drivers of transcriptional changes in the peel between L14 and L19. Then, the expression patterns of these important genes were confirmed by qRT-PCR. These results suggested that the biosynthesis pathway of homoeriodictyol was a novel way to affect the yellowing of cucumber peel. Together, the results of this study provide a research basis for the biosynthesis and regulation of flavonoids in cucumber peel and form a significant step towards identifying the molecular mechanism of cucumber peel yellowing.


Sign in / Sign up

Export Citation Format

Share Document