scholarly journals Sage Insights Into the Phylogeny of Salvia: Dealing With Sources of Discordance Within and Across Genomes

2021 ◽  
Vol 12 ◽  
Author(s):  
Jeffrey P. Rose ◽  
Ricardo Kriebel ◽  
Larissa Kahan ◽  
Alexa DiNicola ◽  
Jesús G. González-Gallegos ◽  
...  

Next-generation sequencing technologies have facilitated new phylogenomic approaches to help clarify previously intractable relationships while simultaneously highlighting the pervasive nature of incongruence within and among genomes that can complicate definitive taxonomic conclusions. Salvia L., with ∼1,000 species, makes up nearly 15% of the species diversity in the mint family and has attracted great interest from biologists across subdisciplines. Despite the great progress that has been achieved in discerning the placement of Salvia within Lamiaceae and in clarifying its infrageneric relationships through plastid, nuclear ribosomal, and nuclear single-copy genes, the incomplete resolution has left open major questions regarding the phylogenetic relationships among and within the subgenera, as well as to what extent the infrageneric relationships differ across genomes. We expanded a previously published anchored hybrid enrichment dataset of 35 exemplars of Salvia to 179 terminals. We also reconstructed nearly complete plastomes for these samples from off-target reads. We used these data to examine the concordance and discordance among the nuclear loci and between the nuclear and plastid genomes in detail, elucidating both broad-scale and species-level relationships within Salvia. We found that despite the widespread gene tree discordance, nuclear phylogenies reconstructed using concatenated, coalescent, and network-based approaches recover a common backbone topology. Moreover, all subgenera, except for Audibertia, are strongly supported as monophyletic in all analyses. The plastome genealogy is largely resolved and is congruent with the nuclear backbone. However, multiple analyses suggest that incomplete lineage sorting does not fully explain the gene tree discordance. Instead, horizontal gene flow has been important in both the deep and more recent history of Salvia. Our results provide a robust species tree of Salvia across phylogenetic scales and genomes. Future comparative analyses in the genus will need to account for the impacts of hybridization/introgression and incomplete lineage sorting in topology and divergence time estimation.

2021 ◽  
Author(s):  
Sebastian Hoehna ◽  
Sarah E Lower ◽  
Pablo Duchen ◽  
Ana Catalan

Fireflies (Coleoptera: Lampyridae) consist of over 2,000 described extant species. A well-resolved phylogeny of fireflies is important for the study of their bioluminescence, evolution, and conservation. We used a recently published anchored hybrid enrichment dataset (AHE; 436 loci for 88 Lampyridae species and 10 outgroup species) and state-of-the-art statistical methods (the fossilized birth-death-range process implemented in a Bayesian framework) to estimate a time-calibrated phylogeny of Lampyridae. Unfortunately, estimating calibrated phylogenies using AHE and the latest and most robust time-calibration strategies is not possible because of computational constraints. As a solution, we subset the full dataset and applied three different strategies: using the most complete loci, the most homogeneous loci, and the loci with the highest accuracy to infer the well established Photinus clade. The estimated topology using the three data subsets agreed on almost all major clades and only showed minor discordance with less supported nodes. The estimated divergence times overlapped for all nodes that are shared between the topologies. Thus, divergence time estimation is robust as long as the topology inference is robust and any well selected data subset suffices. Additionally, we observed an unexpected amount of gene tree discordance between the 436 AHE loci. Our assessment of model adequacy showed that standard phylogenetic substitution models are not adequate for any of the 436 AHE loci which is likely to bias phylogenetic inferences. We performed a simulation study to explore the impact of (a) incomplete lineage sorting, (b) uniformly distributed and systematic missing data, and (c) systematic bias in the position of highly variable and conserved sites. For our simulated data, we observed less gene tree variation and hence the empirically observed amount of gene tree discordance for the AHE dataset is unexpected.


2022 ◽  
Vol 12 ◽  
Author(s):  
Chia-Lun Hsieh ◽  
Chih-Chieh Yu ◽  
Yu-Lan Huang ◽  
Kuo-Fang Chung

The early-diverging eudicot family Berberidaceae is composed of a morphologically diverse assemblage of disjunctly distributed genera long praised for their great horticultural and medicinal values. However, despite century-long studies, generic delimitation of Berberidaceae remains controversial and its tribal classification has never been formally proposed under a rigorous phylogenetic context. Currently, the number of accepted genera in Berberidaceae ranges consecutively from 13 to 19, depending on whether to define Berberis, Jeffersonia, and Podophyllum broadly, or to segregate these three genera further and recognize Alloberberis, Mahonia, and Moranothamnus, Plagiorhegma, and Dysosma, Diphylleia, and Sinopodophyllum, respectively. To resolve Berberidaceae’s taxonomic disputes, we newly assembled 23 plastomes and, together with 85 plastomes from the GenBank, completed the generic sampling of the family. With 4 problematic and 14 redundant plastome sequences excluded, robust phylogenomic relationships were reconstructed based on 93 plastomes representing all 19 genera of Berberidaceae and three outgroups. Maximum likelihood phylogenomic relationships corroborated with divergence time estimation support the recognition of three subfamilies Berberidoideae, Nandinoideae, and Podophylloideae, with tribes Berberideae and Ranzanieae, Leonticeae and Nandineae, and Podophylleae, Achlydeae, Bongardieae tr. nov., Epimedieae, and Jeffersonieae tr. nov. in the former three subfamilies, respectively. By applying specifically stated criteria, our phylogenomic data also support the classification of 19 genera, recognizing Alloberberis, Mahonia, and Moranothamnus, Plagiorhegma, and Diphylleia, Dysosma, and Sinopodophyllum that are morphologically and evolutionarily distinct from Berberis, Jeffersonia, and Podophyllum, respectively. Comparison of plastome structures across Berberidaceae confirms inverted repeat expansion in the tribe Berberideae and reveals substantial length variation in accD gene caused by repeated sequences in Berberidoideae. Comparison of plastome tree with previous studies and nuclear ribosomal DNA (nrDNA) phylogeny also reveals considerable conflicts at different phylogenetic levels, suggesting that incomplete lineage sorting and/or hybridization had occurred throughout the evolutionary history of Berberidaceae and that Alloberberis and Moranothamnus could have resulted from reciprocal hybridization between Berberis and Mahonia in ancient times prior to the radiations of the latter two genera.


2022 ◽  
Vol 12 ◽  
Author(s):  
Martha Kandziora ◽  
Petr Sklenář ◽  
Filip Kolář ◽  
Roswitha Schmickl

A major challenge in phylogenetics and -genomics is to resolve young rapidly radiating groups. The fast succession of species increases the probability of incomplete lineage sorting (ILS), and different topologies of the gene trees are expected, leading to gene tree discordance, i.e., not all gene trees represent the species tree. Phylogenetic discordance is common in phylogenomic datasets, and apart from ILS, additional sources include hybridization, whole-genome duplication, and methodological artifacts. Despite a high degree of gene tree discordance, species trees are often well supported and the sources of discordance are not further addressed in phylogenomic studies, which can eventually lead to incorrect phylogenetic hypotheses, especially in rapidly radiating groups. We chose the high-Andean Asteraceae genus Loricaria to shed light on the potential sources of phylogenetic discordance and generated a phylogenetic hypothesis. By accounting for paralogy during gene tree inference, we generated a species tree based on hundreds of nuclear loci, using Hyb-Seq, and a plastome phylogeny obtained from off-target reads during target enrichment. We observed a high degree of gene tree discordance, which we found implausible at first sight, because the genus did not show evidence of hybridization in previous studies. We used various phylogenomic analyses (trees and networks) as well as the D-statistics to test for ILS and hybridization, which we developed into a workflow on how to tackle phylogenetic discordance in recent radiations. We found strong evidence for ILS and hybridization within the genus Loricaria. Low genetic differentiation was evident between species located in different Andean cordilleras, which could be indicative of substantial introgression between populations, promoted during Pleistocene glaciations, when alpine habitats shifted creating opportunities for secondary contact and hybridization.


Author(s):  
Diego F Morales-Briones ◽  
Gudrun Kadereit ◽  
Delphine T Tefarikis ◽  
Michael J Moore ◽  
Stephen A Smith ◽  
...  

Abstract Gene tree discordance in large genomic data sets can be caused by evolutionary processes such as incomplete lineage sorting and hybridization, as well as model violation, and errors in data processing, orthology inference, and gene tree estimation. Species tree methods that identify and accommodate all sources of conflict are not available, but a combination of multiple approaches can help tease apart alternative sources of conflict. Here, using a phylotranscriptomic analysis in combination with reference genomes, we test a hypothesis of ancient hybridization events within the plant family Amaranthaceae s.l. that was previously supported by morphological, ecological, and Sanger-based molecular data. The data set included seven genomes and 88 transcriptomes, 17 generated for this study. We examined gene-tree discordance using coalescent-based species trees and network inference, gene tree discordance analyses, site pattern tests of introgression, topology tests, synteny analyses, and simulations. We found that a combination of processes might have generated the high levels of gene tree discordance in the backbone of Amaranthaceae s.l. Furthermore, we found evidence that three consecutive short internal branches produce anomalous trees contributing to the discordance. Overall, our results suggest that Amaranthaceae s.l. might be a product of an ancient and rapid lineage diversification, and remains, and probably will remain, unresolved. This work highlights the potential problems of identifiability associated with the sources of gene tree discordance including, in particular, phylogenetic network methods. Our results also demonstrate the importance of thoroughly testing for multiple sources of conflict in phylogenomic analyses, especially in the context of ancient, rapid radiations. We provide several recommendations for exploring conflicting signals in such situations. [Amaranthaceae; gene tree discordance; hybridization; incomplete lineage sorting; phylogenomics; species network; species tree; transcriptomics.]


2019 ◽  
Author(s):  
Diego F. Morales-Briones ◽  
Gudrun Kadereit ◽  
Delphine T. Tefarikis ◽  
Michael J. Moore ◽  
Stephen A. Smith ◽  
...  

AbstractGene tree discordance in large genomic datasets can be caused by evolutionary processes such as incomplete lineage sorting and hybridization, as well as model violation, and errors in data processing, orthology inference, and gene tree estimation. Species tree methods that identify and accommodate all sources of conflict are not available, but a combination of multiple approaches can help tease apart alternative sources of conflict. Here, using a phylotranscriptomic analysis in combination with reference genomes, we test a hypothesis of ancient hybridization events within the plant family Amaranthaceae s.l. that was previously supported by morphological, ecological, and Sanger-based molecular data. The dataset included seven genomes and 88 transcriptomes, 17 generated for this study. We examined gene-tree discordance using coalescent-based species trees and network inference, gene tree discordance analyses, site pattern tests of introgression, topology tests, synteny analyses, and simulations. We found that a combination of processes might have generated the high levels of gene tree discordance in the backbone of Amaranthaceae s.l. Furthermore, we found evidence that three consecutive short internal branches produce anomalous trees contributing to the discordance. Overall, our results suggest that Amaranthaceae s.l. might be a product of an ancient and rapid lineage diversification, and remains, and probably will remain, unresolved. This work highlights the potential problems of identifiability associated with the sources of gene tree discordance including, in particular, phylogenetic network methods. Our results also demonstrate the importance of thoroughly testing for multiple sources of conflict in phylogenomic analyses, especially in the context of ancient, rapid radiations. We provide several recommendations for exploring conflicting signals in such situations.


2021 ◽  
Author(s):  
Niklas Reichelt ◽  
Jun Wen ◽  
Claudia Paetzold ◽  
Marc Appelhans

Background and aims: Zanthoxylum L. is the only pantropical genus within Rutaceae, with a few species native to temperate eastern Asia and North America. Efforts using Sanger sequencing failed to resolve the backbone phylogeny of Zanthoxylum. In this study, we employed target enrichment high-throughput sequencing to improve resolution. Gene trees were examined for concordance and sectional classifications of Zanthoxylum were evaluated. Off-target reads were investigated to identify putative single-copy markers for bait refinement, and low-copy markers for evidence of putative hybridization events. Methods: We developed a custom bait set for target enrichment of 745 exons in Zanthoxylum and applied it to 45 Zanthoxylum species and one Tetradium species as the outgroup. Illumina reads were processed via the HybPhyloMaker pipeline. Phylogenetic inferences were conducted using coalescent and concatenated methods. Concordance was assessed using quartet sampling. Off-target reads were assembled and putative single- and low-copy genes were extracted. Additional phylogenetic analyses were performed based on these alignments. Key results: Four major clades are supported within Zanthoxylum: the African clade, the Z. asiaticum clade, the Asian-Pacific-Australian clade, and the American-eastern Asian clade. While overall support has improved, regions of conflict are similar to those previously observed. Gene tree discordances indicate a hybridization event in the ancestor of the Hawaiian lineage, and incomplete lineage sorting for the American backbone. Off-target putative single-copy genes largely confirm on-target results, and putative low-copy genes provide additional evidence for hybridization in the Hawaiian lineage. Only two of the five sections of Zanthoxylum are resolved as monophyletic. Conclusion: Target enrichment is suitable to assess phylogenetic relationships in Zanthoxylum. Our phylogenetic analyses reveal that current sectional classifications need revision. Quartet tree concordance indicates several instances of reticulate evolution. Off-target reads are proven useful to identify additional phylogenetically informative regions for bait refinement or gene tree based approaches.


2017 ◽  
Author(s):  
Stephen A. Smith ◽  
Joseph W. Brown ◽  
Joseph F. Walker

AbstractPhylogenomic datasets have been successfully used to address questions involving evolutionary relationships, patterns of genome structure, signatures of selection, and gene and genome duplications. However, despite the recent explosion in genomic and transcriptomic data, the utility of these data sources for efficient divergence-time inference remains unexamined. Phylogenomic datasets pose two distinct problems for divergence-time estimation: (i) the volume of data makes inference of the entire dataset intractable, and (ii) the extent of underlying topological and rate heterogeneity across genes makes model mis-specification a real concern. “Gene shopping”, wherein a phylogenomic dataset is winnowed to a set of genes with desirable properties, represents an alternative approach that holds promise in alleviating these issues. We implemented an approach for phylogenomic datasets (available in SortaDate) that filters genes by three criteria: (i) clock-likeness, (ii) reasonable tree length (i.e., discernible information content), and (iii) least topological conflict with a focal species tree (presumed to have already been inferred). Such a winnowing procedure ensures that errors associated with model (both clock and topology) mis-specification are minimized, therefore reducing error in divergence-time estimation. We demonstrated the efficacy of this approach through simulation and applied it to published animal (Aves, Diplopoda, and Hymenoptera) and plant (carnivorous Caryophyllales, broad Caryophyllales, and Vitales) phylogenomic datasets. By quantifying rate heterogeneity across both genes and lineages we found that every empirical dataset examined included genes with clock-like, or nearly clock-like, behavior. Moreover, many datasets had genes that were clock-like, exhibited reasonable evolutionary rates, and were mostly compatible with the species tree. We identified overlap in age estimates when analyzing these filtered genes under strict clock and uncorrelated lognormal (UCLN) models. However, this overlap was often due to imprecise estimates from the UCLN model. We find that “gene shopping” can be an efficient approach to divergence-time inference for phylogenomic datasets that may otherwise be characterized by extensive gene tree heterogeneity.


2020 ◽  
Vol 70 (1) ◽  
pp. 49-66 ◽  
Author(s):  
Paul M Hime ◽  
Alan R Lemmon ◽  
Emily C Moriarty Lemmon ◽  
Elizabeth Prendini ◽  
Jeremy M Brown ◽  
...  

Abstract Molecular phylogenies have yielded strong support for many parts of the amphibian Tree of Life, but poor support for the resolution of deeper nodes, including relationships among families and orders. To clarify these relationships, we provide a phylogenomic perspective on amphibian relationships by developing a taxon-specific Anchored Hybrid Enrichment protocol targeting hundreds of conserved exons which are effective across the class. After obtaining data from 220 loci for 286 species (representing 94% of the families and 44% of the genera), we estimate a phylogeny for extant amphibians and identify gene tree–species tree conflict across the deepest branches of the amphibian phylogeny. We perform locus-by-locus genealogical interrogation of alternative topological hypotheses for amphibian monophyly, focusing on interordinal relationships. We find that phylogenetic signal deep in the amphibian phylogeny varies greatly across loci in a manner that is consistent with incomplete lineage sorting in the ancestral lineage of extant amphibians. Our results overwhelmingly support amphibian monophyly and a sister relationship between frogs and salamanders, consistent with the Batrachia hypothesis. Species tree analyses converge on a small set of topological hypotheses for the relationships among extant amphibian families. These results clarify several contentious portions of the amphibian Tree of Life, which in conjunction with a set of vetted fossil calibrations, support a surprisingly younger timescale for crown and ordinal amphibian diversification than previously reported. More broadly, our study provides insight into the sources, magnitudes, and heterogeneity of support across loci in phylogenomic data sets.[AIC; Amphibia; Batrachia; Phylogeny; gene tree–species tree discordance; genomics; information theory.]


2012 ◽  
Vol 279 (1747) ◽  
pp. 4617-4625 ◽  
Author(s):  
Oliver Haddrath ◽  
Allan J. Baker

The origin and timing of the diversification of modern birds remains controversial, primarily because phylogenetic relationships are incompletely resolved and uncertainty persists in molecular estimates of lineage ages. Here, we present a species tree for the major palaeognath lineages using 27 nuclear genes and 27 archaic retroposon insertions. We show that rheas are sister to the kiwis, emu and cassowaries, and confirm ratite paraphyly because tinamous are sister to moas. Divergence dating using 10 genes with broader taxon sampling, including emu, cassowary, ostrich, five kiwis, two rheas, three tinamous, three extinct moas and 15 neognath lineages, suggests that three vicariant events and possibly two dispersals are required to explain their historical biogeography. The age of crown group birds was estimated at 131 Ma (95% highest posterior density 122–138 Ma), similar to previous molecular estimates. Problems associated with gene tree discordance and incomplete lineage sorting in birds will require much larger gene sets to increase species tree accuracy and improve error in divergence times. The relatively rapid branching within neoaves pre-dates the extinction of dinosaurs, suggesting that the genesis of the radiation within this diverse clade of birds was not in response to the Cretaceous–Paleogene extinction event.


2021 ◽  
Author(s):  
Edeline Gagnon ◽  
Rebecca Hilgenhof ◽  
Andr&eacutes Orejuela ◽  
Angela McDonnell ◽  
Gaurav Sablok ◽  
...  

Increased volumes of phylogenomic data have revealed incongruent topologies in gene trees, both between and within genomes across many organisms. Some of these incongruences indicate polytomies that may remain impossible to resolve. Here, widespread gene-tree discordance is uncovered along the backbone of Solanum, one of the largest flowering plant genera that includes the cultivated potato, tomato, and eggplant, as well as 24 minor crop plants. First, a densely sampled species-level phylogeny of Solanum is built using unpublished and publicly available Sanger sequences comprising 60% of all accepted species (742 spp.) and nine regions (ITS, waxy, and seven plastid markers). The robustness of the Sanger-based topology is tested by examining a plastome dataset with 140 species and a nuclear target-capture dataset with 39 species of Solanum. Clear incongruences between species trees generated from the supermatrix, plastome, and nuclear target-capture datasets are revealed. Discordance within the plastome and target-capture dataset are found at different evolutionary depths in three different areas along the backbone of these phylogenetic trees, with polytomy tests suggesting that most of these nodes have short branches and should be collapsed. We argue that incomplete lineage sorting due to rapid diversification is the most likely cause behind these polytomies, and that embracing the uncertainty that underlies them is crucial to depict the evolution of large and rapidly radiating lineages.


Sign in / Sign up

Export Citation Format

Share Document