scholarly journals Differential Responses of Plant Primary Productivity to Nutrient Addition in Natural and Restored Alpine Grasslands in the Qinghai Lake Basin

2021 ◽  
Vol 12 ◽  
Author(s):  
Chunli Li ◽  
Yonghui Li ◽  
Xinwei Li ◽  
Li Ma ◽  
Yuanming Xiao ◽  
...  

Climate, land-use changes, and nitrogen (N) deposition strongly impact plant primary productivity, particularly in alpine grassland ecosystems. In this study, the differential responses of plant community primary productivity to N and phosphorus (P) nutrient application were investigated in the natural (NG) and “Grain for Green” restored (RG) alpine grasslands by a continuous 3-year experiment in the Qinghai Lake Basin. N addition only significantly promoted plant aboveground biomass (AGB) by 42% and had no significant effect on belowground biomass (BGB) and total biomass (TB) in NG. In comparison with NG, N addition elevated AGB and BGB concurrently in RG by 138% and 24%, respectively, which further significantly increased TB by 41% in RG. Meanwhile, N addition significantly decreased BGB and the AGB ratio (R/S) both in NG and RG. Compared with N addition, P addition did not perform an evident effect on plant biomass parameters. Additionally, AGB was merely negatively influenced by growing season temperatures (GST) under the N addition treatment in NG. AGB was negatively associated with GST but positively related to growing season precipitation (GSP) in RG. By contrast, changes in the R/S ratio in RG were positively correlated with GST and negatively related to GSP. In sum, the results revealed that plant community biomass exhibited convergent (AGB and R/S) and divergent (BGB and TB) responses to N addition between NG and RG. In addition, the outcomes suggested that climate warming would enhance plant biomass allocation to belowground under ongoing N deposition, and indicated the significance of precipitation for plant growth and AGB accumulation in this restored alpine grassland ecosystem.

2006 ◽  
Vol 49 (8) ◽  
pp. 851-861 ◽  
Author(s):  
Zhisheng An ◽  
Ping Wang ◽  
Ji Shen ◽  
Yixiang Zhang ◽  
Peizhen Zhang ◽  
...  

2019 ◽  
Vol 44 (1) ◽  
pp. 70-93 ◽  
Author(s):  
Hai-cheng Wei ◽  
Guang-liang Hou ◽  
Qi-shun Fan ◽  
David B Madsen ◽  
Zhan-jie Qin ◽  
...  

The history of permanent human settlement in the high-altitude regions (>3000 m above sea level [masl]) of the Qinghai-Tibetan Plateau (QTP) is important in understanding human adaptation to this cold “Third Pole” region. The Qinghai Lake Basin was an important corridor used by prehistoric humans migrating to the inner QTP. Pastoralism is currently the most important means of sustaining permanent human settlement in the high-altitude regions of the QTP. However, the lack of reliable proxy measures reflecting prehistoric pastoral activities impedes our understanding of how pastoralism developed. The identification of coprophilous fungi in prehistoric cultural deposits may help refine the history of pastoralism. We collected 21 modern domesticated herbivore dung samples and 66 surface soil samples from the Qinghai Lake Basin for fungal spore analyses. We then evaluated how useful such analyses are for identifying grazing activities. Fifty-three samples were also collected from the JXG2 stratigraphic profile (∼10.0–0 ka; 3312 masl) for fungal spore analysis. Results indicate that low and stable values of the total concentration of coprophilous fungi were present from ∼10.0 to ∼5.5 ka. Concentrations gradually increased from ∼5.5 to ∼4.2 ka, significantly increased from ∼4.2 to ∼2.6 ka, and then increased dramatically after ∼2.6 ka. By combining these results with charcoal concentrations (>50 µm), lithic artifacts, bones and potsherds recovered from the JXG2 site, we infer that early pastoralism in Qinghai Lake Basin appeared between ∼6.0 to ∼5.5 ka and gradually intensified throughout the remainder of the Holocene as herding and farming gradually replaced hunting–gathering as the primary subsistence strategies. These results are supported by pollen records, archeological remains and historical records in the northeastern QTP.


2018 ◽  
Vol 90 (2) ◽  
pp. 310-320 ◽  
Author(s):  
Ruijie Lu ◽  
Xiaokang Liu ◽  
Zhiqiang Lü ◽  
Lu Chen ◽  
Jing Du

AbstractHere we report a new find of abundant woody debris and cones in stratum of two sections located to the east of the Qinghai Lake basin in China. Analysis of the anatomical structure of the wood and cones confirmed that they are Picea crassifolia Kom. The results of accelerator mass spectrometry 14C dating indicate that the buried Qinghai spruce grew during 9.7–4.2 ka, and the ages of the large trunks or branches are mainly concentrated within the interval 7.5–6.5 ka. This finding gives direct evidence at the species level about the presence of coniferous forest in the early–middle Holocene in Qinghai lake basin. In addition, the buried cones suggest that the early-middle Holocene environment was suitable for the propagation of Picea crassifolia Kom. The variations in the occurrence of Qinghai spruce forest in the Holocene probably reflect changes in humidity/moisture. The humid early-middle Holocene was suitable for the growth and reproduction of Qinghai spruce forest, while a shift toward an increasingly arid climate during the late Holocene resulted in the disappearance of Picea crassifolia Kom. from the Qinghai Lake basin, although human activities may also have contributed to the environmental change.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jing Zhang ◽  
Xiaoan Zuo ◽  
Xueyong Zhao ◽  
Jianxia Ma ◽  
Eduardo Medina-Roldán

Abstract Extreme climate events and nitrogen (N) deposition are increasingly affecting the structure and function of terrestrial ecosystems. However, the response of plant biomass to variations to these global change drivers is still unclear in semi-arid regions, especially in degraded sandy grasslands. In this study, a manipulative field experiment run over two years (from 2017 to 2018) was conducted to examine the effect of rainfall alteration and nitrogen addition on biomass allocation of annuals and perennial plants in Horqin sandy grassland, Northern China. Our experiment simulated extreme rainfall and extreme drought (a 60% reduction or increment in the growing season rainfall with respect to a control background) and N addition (20 g/m2) during the growing seasons. We found that the sufficient rainfall during late July and August compensates for biomass losses caused by insufficient water in May and June. When rainfall distribution is relatively uniform during the growing season, extreme rainfall increased aboveground biomass (AGB) and belowground biomass (BGB) of annuals, while extreme drought reduced AGB and BGB of perennials. Rainfall alteration had no significant impacts on the root-shoot ratio (R/S) of sandy grassland plants, while N addition reduced R/S of grassland species when there was sufficient rainfall in the early growing season. The biomass of annuals was more sensitive to rainfall alteration and nitrogen addition than the biomass of perennials. Our findings emphasize the importance of monthly rainfall distribution patterns during the growing season, which not only directly affect the growth and development of grassland plants, but also affect the nitrogen availability of grassland plants.


CATENA ◽  
2016 ◽  
Vol 147 ◽  
pp. 345-355 ◽  
Author(s):  
Chunli Li ◽  
Qi Li ◽  
Liang Zhao ◽  
Shidong Ge ◽  
Dongdong Chen ◽  
...  

2013 ◽  
Vol 33 (14) ◽  
pp. 4450-4459 ◽  
Author(s):  
骆成凤 LUO Chengfeng ◽  
许长军 XU Changjun ◽  
游浩妍 YOU Haoyan ◽  
靳生洪 JIN Shenghong

Sign in / Sign up

Export Citation Format

Share Document