scholarly journals Epidermis-Specific Metabolic Engineering of Sesquiterpene Formation in Tomato Affects the Performance of Potato Aphid Macrosiphum euphorbiae

2021 ◽  
Vol 12 ◽  
Author(s):  
Fumin Wang ◽  
Yong-Lak Park ◽  
Michael Gutensohn

Tomato produces a number of terpenes in their glandular trichomes that contribute to host plant resistance against pests. While glandular trichomes of cultivated tomato Solanum lycopersicum primarily accumulate a blend of monoterpenes, those of the wild tomato species Solanum habrochaites produce various sesquiterpenes. Recently, we have identified two groups of sesquiterpenes in S. habrochaites accessions that negatively affect the performance and choice behavior of the potato aphid (Macrosiphum euphorbiae). Aphids are piercing-sucking herbivores that use their mouthpart to penetrate and probe plant tissues in order to ultimately access vascular tissue and ingest phloem sap. Because secondary metabolites produced in glandular trichomes can affect the initial steps of the aphid feeding behavior, introducing the formation of defensive terpenes into additional plant tissues via metabolic engineering has the potential to reduce tissue penetration by aphids and in consequence virus transmission. Here, we have developed two multicistronic expression constructs based on the two sesquiterpene traits with activity toward M. euphorbiae previously identified in S. habrochaites. Both constructs are composed of sequences encoding a prenyl transferase and a respective S. habrochaites terpene synthase, as well as enhanced green fluorescent protein as a visible marker. All three coding sequences were linked by short nucleotide sequences encoding the foot-and-mouth disease virus 2A self-processing oligopeptide which allows their co-expression under the control of one promoter. Transient expression of both constructs under the epidermis-specific Arabidopsis CER5-promoter in tomato leaves demonstrated that formation of the two sets of defensive sesquiterpenes, β-caryophyllene/α-humulene and (−)-endo-α-bergamotene/(+)-α-santalene/(+)-endo-β-bergamotene, can be introduced into new tissues in tomato. The epidermis-specific transgene expression and terpene formation were verified by fluorescence microscopy and tissue fractionation with subsequent analysis of terpene profiles, respectively. In addition, the longevity and fecundity of M. euphorbiae feeding on these engineered tomato leaves were significantly reduced, demonstrating the efficacy of this novel aphid control strategy.

2021 ◽  
Vol 9 (5) ◽  
pp. 1005
Author(s):  
Olga Chervyakova ◽  
Elmira Tailakova ◽  
Nurlan Kozhabergenov ◽  
Sandugash Sadikaliyeva ◽  
Kulyaisan Sultankulova ◽  
...  

Capripoxviruses with a host range limited to ruminants have the great potential to be used as vaccine vectors. The aim of this work was to evaluate attenuated sheep pox virus (SPPV) vaccine strain NISKHI as a vector expressing several genes. Open reading frames SPPV020 (ribonucleotide kinase) and SPPV066 (thymidine kinase) were selected as sites for the insertion of foreign genes. Two integration plasmids with expression cassette were designed and constructed. Recombinant SPPVs expressing an enhanced green fluorescent protein (EGFP) (rSPPV(RRΔ)EGFP and rSPPV(TKΔ)EGFP), Foot-and-mouth disease virus capsid protein (VP1), and Brucella spp. outer membrane protein 25 (OMP25) (rSPPV(RRΔ)VP1A-(TKΔ)OMP25) were generated under the transient dominant selection method. The insertion of foreign genes into the SPPV020 and SPPV066 open reading frames did not influence the replication of the recombinant viruses in the cells. Successful foreign gene expression in vitro was assessed by luminescent microscopy (EGFP) and Western blot (VP1 and OMP25). Our results have shown that foreign genes were expressed by rSPPV both in permissive (lamb testicles) and non-permissive (bovine kidney, saiga kidney, porcine kidney) cells. Mice immunized with rSPPV(RRΔ)VP1A-(TKΔ)OMP25 elicited specific antibodies to both SPPV and foreign genes VP1 and OMP25. Thus, SPPV NISKHI may be used as a potential safe immunogenic viral vector for the development of polyvalent vaccines.


1962 ◽  
Vol 94 (6) ◽  
pp. 667-671 ◽  
Author(s):  
C. A. Barlow

Life-history and development of Macrosiphum euphorbiae (Thomas) have been studied by Smith (1919), Patch (1925), and MacGillivray and Anderson (1958). In most of these studies, considerable variation in temperature was experienced. The effects of different constant temperatures have never been reported. The following experiments were conducted to determine the influence of temperature on development, survival, and fecundity of M. euphorbiae under closely controlled conditions.


2005 ◽  
Vol 30 (1) ◽  
Author(s):  
Frank Zalom ◽  
Eileen Cullen ◽  
Nikki Nicola

2017 ◽  
Vol 24 (6) ◽  
pp. 1015-1024 ◽  
Author(s):  
Alison Jane Karley ◽  
Matthew Emslie-Smith ◽  
Alison Elizabeth Bennett

1997 ◽  
Vol 129 (2) ◽  
pp. 241-249 ◽  
Author(s):  
G. Boiteau ◽  
W.P.L. Osborn

AbstractAdult potato aphids, Macrosiphum euphorbiae (Thomas), caged on potato terminal leaflets treated systemically with imidacloprid solutions ranging between 5.4 × 10−4 and 5.4 × 10−8 mL per mL water showed a significant reduction in the distance they travelled, time taken to travel a given distance, and flight propensity but no significant differences in the frequency or duration of short probing behaviour. The frequency of adult apterous potato aphids colonizing untreated potato leaflets or leaflets treated with an imidacloprid solution (5.4 × 10−4 mL per mL water) was not significantly different, indicating no repellency. Potato aphids moving from systemically treated to untreated leaflets did not recover much and their reduced walking ability was maintained for days. A 3-day exposure to vapour from an imidacloprid solution (5.4 × 10−4 mL per mL water) did not produce significant mortality or changes in nymphal production. The daily cumulative mortality obtained by caging potato aphids on potato leaflets placed in an imidacloprid solution (5.4 × 10−7 mL per mL water) was similar to that obtained in the field, on 20-day-old plants treated at planting with imidacloprid applied at 0.02 g Ai/m. None of the rates of imidacloprid tested stimulated the dispersal of apterous or alate potato aphids.


Biosensors ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 197
Author(s):  
Gabriele Panicucci ◽  
Sergio Iacopino ◽  
Elisa De Meo ◽  
Pierdomenico Perata ◽  
Daan A. Weits

Oxygen levels in plant tissues may vary, depending on metabolism, diffusion barriers, and environmental availability. Current techniques to assess the oxic status of plant cells rely primarily on invasive microoptodes or Clark-type electrodes, which are not optimally suited for experiments that require high spatial and temporal resolution. In this case, a genetically encoded oxygen biosensor is required instead. This article reports the design, test, and optimization of a hypoxia-signaling reporter, based on five-time repeated hypoxia-responsive promoter elements (HRPE) driving the expression of different reporter proteins. Specifically, this study aimed to improve its performance as a reporter of hypoxic conditions by testing the effect of different untranslated regions (UTRs) at the 5′ end of the reporter coding sequence. Next, we characterized an optimized version of the HRPE promoter (HRPE-Ω) in terms of hypoxia sensitivity and time responsiveness. We also observed that severe oxygen deficiency counteracted the reporter activity due to inhibition of GFP maturation, which requires molecular oxygen. To overcome this limitation, we therefore employed an oxygen-independent UnaG fluorescent protein-coupled to an O2-dependent mCherry fluorophore under the control of the optimized HRPE-Ω promoter. Remarkably, this sensor, provided a different mCherry/UnaG ratiometric output depending on the externally imposed oxygen concentration, providing a solution to distinguish between different degrees of tissue hypoxia. Moreover, a ubiquitously expressed UnaG-mCherry fusion could be used to image oxygen concentrations directly, albeit at a narrow range. The luminescent and fluorescent hypoxia-reporters described here can readily be used to conduct studies that involve anaerobiosis in plants.


2008 ◽  
pp. 3008-3011
Author(s):  
J. Howard Frank ◽  
J. Howard Frank ◽  
Michael C. Thomas ◽  
Allan A. Yousten ◽  
F. William Howard ◽  
...  

1999 ◽  
Vol 24 (1) ◽  
Author(s):  
Frank Zalom ◽  
Douglas Walsh ◽  
Eileen Cullen ◽  
Christine Tobia ◽  
Gene Miayo

Microbiology ◽  
2000 ◽  
Vol 81 (7) ◽  
pp. 1851-1855 ◽  
Author(s):  
Carole L. Thomas ◽  
Andrew J. Maule

To investigate the process of tubule formation for the cauliflower mosaic virus movement protein (CaMV MP), the green fluorescent protein (GFP) was fused to the MP to provide a vital marker for MP location after expression in insect cells. In contrast to the long tubular structures seen previously following baculovirus-based expression of the wild-type MP, the fusion protein produced only aggregates of fluorescing material in the cytoplasm. However, by co-expressing wild-type MP and GFP–MP, or by engineering their co-accumulation by introducing a foot-and-mouth disease virus 2A cleavage sequence between GFP and MP, long GFP-fluorescing tubules were formed. The experiments suggest that the presence of GFP at the N or C terminus of the tubule-forming domain of the CaMV MP places steric constraints upon the aggregation of the MP into a tubule but that this can be overcome by providing wild-type protein for inclusion in the aggregate.


Sign in / Sign up

Export Citation Format

Share Document