scholarly journals Understanding the Shade Tolerance Responses Through Hints From Phytochrome A-Mediated Negative Feedback Regulation in Shade Avoiding Plants

2021 ◽  
Vol 12 ◽  
Author(s):  
Huiying Xu ◽  
Peirui Chen ◽  
Yi Tao

Based on how plants respond to shade, we typically classify them into two groups: shade avoiding and shade tolerance plants. Under vegetative shade, the shade avoiding species induce a series of shade avoidance responses (SARs) to outgrow their competitors, while the shade tolerance species induce shade tolerance responses (STRs) to increase their survival rates under dense canopy. The molecular mechanism underlying the SARs has been extensively studied using the shade avoiding model plant Arabidopsis thaliana, while little is known about STRs. In Aarabidopsis, there is a PHYA-mediated negative feedback regulation that suppresses exaggerated SARs. Recent studies revealed that in shade tolerance Cardamine hirsuta plants, a hyperactive PHYA was responsible for suppressing shade-induced elongation growth. We propose that similar signaling components may be used by shade avoiding and shade tolerance plants, and different phenotypic outputs may result from differential regulation or altered dynamic properties of these signaling components. In this review, we summarized the role of PHYA and its downstream components in shade responses, which may provide insights into understanding how both types of plants respond to shade.

1967 ◽  
Vol 11 (1) ◽  
pp. 93-104 ◽  
Author(s):  
R. W. Bullard ◽  
M. R. Banerjee ◽  
B. A. Mac Intyre

2017 ◽  
Vol 313 (5) ◽  
pp. E507-E514 ◽  
Author(s):  
Marissa Kraynak ◽  
Matthew T. Flowers ◽  
Robert A. Shapiro ◽  
Amita Kapoor ◽  
Jon E. Levine ◽  
...  

Whereas the ovary produces the majority of estradiol (E2) in mature female primates, extraovarian sources contribute to E2 synthesis and action, including the brain E2-regulating hypothalamic gonadotropin-releasing hormone. In ovary-intact female rodent models, aromatase inhibition (AI) induces a polycystic ovary syndrome-like hypergonadotropic hyperandrogenism due to absent E2-mediated negative feedback. To examine the role of extraovarian E2 on nonhuman primate gonadotropin regulation, the present study uses letrozole to elicit AI in adult female marmoset monkeys. Sixteen female marmosets ( Callithrix jacchus; >2 yr) were randomly assigned to ovary-intact or ovariectomy (OVX) conditions and subsequently placed on a daily oral regimen of either ~200 µl vehicle alone (ovary-intact Control, n = 3; OVX, n = 3) or 1 mg ⋅ kg−1 ⋅ day−1 letrozole in vehicle (ovary-intact AI, n = 4; OVX + AI, n = 6). Blood samples were collected every 10 days, and plasma chorionic gonadotropin (CG) and steroid hormone levels were determined by validated radioimmunoassay and liquid chromatography/tandem mass spectrometry, respectively. Ovary-intact, AI-treated and OVX females exhibited elevated CG ( P < 0.01, P = 0.004, respectively) compared with controls, and after 30 days, OVX + AI females exhibited a suprahypergonadotropic phenotype ( P = 0.004) compared with ovary-intact + AI and OVX females. Androstenedione ( P = 0.03) and testosterone ( P = 0.05) were also elevated in ovary-intact, AI-treated females above all other groups. The current study thus confirms in a nonhuman primate that E2 depletion and diminished negative feedback in ovary-intact females engage hypergonadotropic hyperandrogenism. Additionally, we demonstrate that extraovarian estrogens, possibly neuroestrogens, contribute to female negative feedback regulation of gonadotropin release.


1992 ◽  
Vol 40 (2) ◽  
pp. 171
Author(s):  
M Imamura ◽  
KY Lee ◽  
M Moriyasu ◽  
Y Song ◽  
TM Chang ◽  
...  

1993 ◽  
Vol 105 (2) ◽  
pp. 548-553 ◽  
Author(s):  
M. Imamura ◽  
K.Y. Lee ◽  
Y. Song ◽  
M. Moriyasu ◽  
T.M. Chang ◽  
...  

2018 ◽  
Vol 225 (2) ◽  
pp. e13176 ◽  
Author(s):  
Anastasia A. Shvetsova ◽  
Dina K. Gaynullina ◽  
Olga S. Tarasova ◽  
Rudolf Schubert

Endocrinology ◽  
2008 ◽  
Vol 149 (11) ◽  
pp. 5482-5490 ◽  
Author(s):  
Amy R. Furay ◽  
Amy E. Bruestle ◽  
James P. Herman

Previous work has implicated the forebrain glucocorticoid receptor (GR) in feedback regulation of the hypothalamic-pituitary-adrenocortical (HPA) axis. The present series of experiments used male mice with a targeted forebrain-specific GR knockout (in which forebrain includes the prefrontal cortex, hippocampus, and basolateral amygdala) to determine the role of forebrain GR in HPA axis regulation after stress. The data indicate that the forebrain GR is necessary for maintaining basal regulation of corticosterone secretion in the morning, confirming its role in HPA axis regulation. Our data further indicate that the forebrain GR is necessary for negative feedback after both mild and robust acute psychogenic stressors but not hypoxia, a systemic stressor. In contrast, forebrain-specific GR knockout and control mice exhibit equivalent HPA axis hyperactivity and facilitation after chronic variable stress, suggesting that changes in forebrain GR are not essential for chronic stress-induced pathology. These studies provide novel and definitive evidence that the forebrain GR selectively contributes negative feedback regulation of HPA axis responses to psychogenic stressors. Moreover, the data indicate that chronic stress-induced alterations in HPA axis function are mediated by mechanisms independent of the forebrain GR. Overall, the data are consistent with an essential role of the forebrain GR in coordinating endocrine responses to stimuli of a psychological origin.


Sign in / Sign up

Export Citation Format

Share Document