The role of microRNA in the delayed negative feedback regulation of gene expression

2007 ◽  
Vol 358 (3) ◽  
pp. 722-726 ◽  
Author(s):  
Zhong-Ru Xie ◽  
Hsih-Te Yang ◽  
Wei-Chung Liu ◽  
Ming-Jing Hwang
2021 ◽  
Author(s):  
Yusuke T. Maeda

Abstract Gene expression via transcription-translation is the most fundamental reaction to sustain biological systems, and complex reactions such as this one occur in a small compartment of living cells. Transcriptional feedback that controls gene expression during mRNA synthesis is a vital mechanism that regulates protein synthesis in cells. There is increasing evidence that the cellular compartment induces steric effects in gene expression reactions. However, the finite-size effect of spatial constraints on feedback regulation is not well understood. Here, we study the confinement effect on transcriptional negative feedback regulation of gene expression reactions using a theoretical model. We find that negative feedback regulation alters the scaling relation of gene expression level on compartment volume, approaching the regular scaling relation without the steric effect. Our findings suggest that negative autoregulatory feedback at the transcription step can dampen the size-dependence of protein expression levels in heterogeneous cell populations.


2019 ◽  
Author(s):  
Maria Ninova ◽  
Baira Godneeva ◽  
Yung-Chia Ariel Chen ◽  
Yicheng Luo ◽  
Sharan J. Prakash ◽  
...  

AbstractChromatin is critical for genome compaction and gene expression. On a coarse scale, the genome is divided into euchromatin, which harbors the majority of genes and is enriched in active chromatin marks, and heterochromatin, which is gene-poor but repeat-rich. The conserved molecular hallmark of heterochromatin is the H3K9me3 modification, which is associated with gene silencing. We found that in Drosophila deposition of most of the H3K9me3 mark depends on SUMO and the SUMO-ligase Su(var)2-10, which recruits the histone methyltransferase complex SetDB1/Wde. In addition to repressing repeats, H3K9me3 also influences expression of both hetero- and euchromatic host genes. High H3K9me3 levels in heterochromatin are required to suppress spurious non-canonical transcription and ensure proper gene expression. In euchromatin, a set of conserved genes is repressed by Su(var)2-10/SetDB1-induced H3K9 trimethylation ensuring tissue-specific gene expression. Several components of heterochromatin are themselves repressed by this pathway providing a negative feedback mechanism to ensure chromatin homeostasis.Highlights-Proper expression of host genes residing in heterochromatin requires Su(var)2-10-dependent installation of the H3K9me3 mark to suppress spurious non-canonical transcription.-A set of euchromatic host genes is repressed by transposon-independent installation of H3K9me3 in a process that depends on Su(var)2-10 and SUMO.-Installation of H3K9me3 via Su(var)2-10 ensures tissue-specific gene expression.-H3K9me3-dependent silencing of genes encoding proteins involved in heterochromatin formation provides negative feedback regulation to maintain heterochromatin homeostasis.


2020 ◽  
Vol 77 (3) ◽  
pp. 571-585.e4 ◽  
Author(s):  
Maria Ninova ◽  
Baira Godneeva ◽  
Yung-Chia Ariel Chen ◽  
Yicheng Luo ◽  
Sharan J. Prakash ◽  
...  

Thyroid ◽  
2016 ◽  
Vol 26 (11) ◽  
pp. 1630-1639 ◽  
Author(s):  
Yuqian Luo ◽  
Takeshi Akama ◽  
Akiko Okayama ◽  
Aya Yoshihara ◽  
Mariko Sue ◽  
...  

1967 ◽  
Vol 11 (1) ◽  
pp. 93-104 ◽  
Author(s):  
R. W. Bullard ◽  
M. R. Banerjee ◽  
B. A. Mac Intyre

2017 ◽  
Vol 313 (5) ◽  
pp. E507-E514 ◽  
Author(s):  
Marissa Kraynak ◽  
Matthew T. Flowers ◽  
Robert A. Shapiro ◽  
Amita Kapoor ◽  
Jon E. Levine ◽  
...  

Whereas the ovary produces the majority of estradiol (E2) in mature female primates, extraovarian sources contribute to E2 synthesis and action, including the brain E2-regulating hypothalamic gonadotropin-releasing hormone. In ovary-intact female rodent models, aromatase inhibition (AI) induces a polycystic ovary syndrome-like hypergonadotropic hyperandrogenism due to absent E2-mediated negative feedback. To examine the role of extraovarian E2 on nonhuman primate gonadotropin regulation, the present study uses letrozole to elicit AI in adult female marmoset monkeys. Sixteen female marmosets ( Callithrix jacchus; >2 yr) were randomly assigned to ovary-intact or ovariectomy (OVX) conditions and subsequently placed on a daily oral regimen of either ~200 µl vehicle alone (ovary-intact Control, n = 3; OVX, n = 3) or 1 mg ⋅ kg−1 ⋅ day−1 letrozole in vehicle (ovary-intact AI, n = 4; OVX + AI, n = 6). Blood samples were collected every 10 days, and plasma chorionic gonadotropin (CG) and steroid hormone levels were determined by validated radioimmunoassay and liquid chromatography/tandem mass spectrometry, respectively. Ovary-intact, AI-treated and OVX females exhibited elevated CG ( P < 0.01, P = 0.004, respectively) compared with controls, and after 30 days, OVX + AI females exhibited a suprahypergonadotropic phenotype ( P = 0.004) compared with ovary-intact + AI and OVX females. Androstenedione ( P = 0.03) and testosterone ( P = 0.05) were also elevated in ovary-intact, AI-treated females above all other groups. The current study thus confirms in a nonhuman primate that E2 depletion and diminished negative feedback in ovary-intact females engage hypergonadotropic hyperandrogenism. Additionally, we demonstrate that extraovarian estrogens, possibly neuroestrogens, contribute to female negative feedback regulation of gonadotropin release.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huiying Xu ◽  
Peirui Chen ◽  
Yi Tao

Based on how plants respond to shade, we typically classify them into two groups: shade avoiding and shade tolerance plants. Under vegetative shade, the shade avoiding species induce a series of shade avoidance responses (SARs) to outgrow their competitors, while the shade tolerance species induce shade tolerance responses (STRs) to increase their survival rates under dense canopy. The molecular mechanism underlying the SARs has been extensively studied using the shade avoiding model plant Arabidopsis thaliana, while little is known about STRs. In Aarabidopsis, there is a PHYA-mediated negative feedback regulation that suppresses exaggerated SARs. Recent studies revealed that in shade tolerance Cardamine hirsuta plants, a hyperactive PHYA was responsible for suppressing shade-induced elongation growth. We propose that similar signaling components may be used by shade avoiding and shade tolerance plants, and different phenotypic outputs may result from differential regulation or altered dynamic properties of these signaling components. In this review, we summarized the role of PHYA and its downstream components in shade responses, which may provide insights into understanding how both types of plants respond to shade.


Sign in / Sign up

Export Citation Format

Share Document