scholarly journals Imposed visual feedback delay of an action changes mass perception based on the sensory prediction error

2013 ◽  
Vol 4 ◽  
Author(s):  
Takuya Honda ◽  
Nobuhiro Hagura ◽  
Toshinori Yoshioka ◽  
Hiroshi Imamizu
Author(s):  
Koenraad Vandevoorde ◽  
Jean-Jacques Orban de Xivry

The ability to adjust movements to changes in the environment declines with aging. This age-related decline is caused by the decline of explicit adjustments. However, implicit adaptation remains intact and might even be increased with aging. Since proprioceptive information has been linked to implicit adaptation, it might well be that an age-related decline in proprioceptive acuity might be linked to the performance of older adults in implicit adaptation tasks. Indeed, age-related proprioceptive deficits could lead to altered sensory integration with an increased weighting of the visual sensory-prediction error. Another possibility is that reduced proprioceptive acuity results in an increased reliance on predicted sensory consequences of the movement. Both these explanations led to our preregistered hypothesis: we expected a relation between the decline of proprioception and the amount of implicit adaptation across ages. However, we failed to support this hypothesis. Our results question the existence of reliability-based integration of visual and proprioceptive signals during motor adaptation.


2020 ◽  
Author(s):  
Douglas M. Shiller ◽  
Takashi Mitsuya ◽  
Ludo Max

ABSTRACTPerceiving the sensory consequences of our actions with a delay alters the interpretation of these afferent signals and impacts motor learning. For reaching movements, delayed visual feedback of hand position reduces the rate and extent of visuomotor adaptation, but substantial adaptation still occurs. Moreover, the detrimental effect of visual feedback delay on reach motor learning—selectively affecting its implicit component—can be mitigated by prior habituation to the delay. Auditory-motor learning for speech has been reported to be more sensitive to feedback delay, and it remains unknown whether habituation to auditory delay reduces its negative impact on learning. We investigated whether 30 minutes of exposure to auditory delay during speaking (a) affects the subjective perception of delay, and (b) mitigates its disruptive effect on speech auditory-motor learning. During a speech adaptation task with real-time perturbation of vowel spectral properties, participants heard this frequency-shifted feedback with no delay, 75 ms delay, or 115 ms delay. In the delay groups, 50% of participants had been exposed to the delay throughout a preceding 30-minute block of speaking whereas the remaining participants completed this block without delay. Although habituation minimized awareness of the delay, no improvement in adaptation to the spectral perturbation was observed. Thus, short-term habituation to auditory feedback delays is not effective in reducing the negative impact of delay on speech auditory-motor adaptation. Combined with previous findings, the strong negative effect of delay and the absence of an influence of delay awareness suggest the involvement of predominantly implicit learning mechanisms in speech.HIGHLIGHTSSpeech auditory-motor adaptation to a spectral perturbation was reduced by ~50% when feedback was delayed by 75 or 115 ms.Thirty minutes of prior delay exposure without perturbation effectively reduced participants’ awareness of the delay.However, habituation was ineffective in remediating the detrimental effect of delay on speech auditory-motor adaptation.The dissociation of delay awareness and adaptation suggests that speech auditory-motor learning is mostly implicit.


2020 ◽  
Vol 32 (3) ◽  
pp. 508-514 ◽  
Author(s):  
Sagi Jaffe-Dax ◽  
Alex M. Boldin ◽  
Nathaniel D. Daw ◽  
Lauren L. Emberson

Recent findings have shown that full-term infants engage in top–down sensory prediction, and these predictions are impaired as a result of premature birth. Here, we use an associative learning model to uncover the neuroanatomical origins and computational nature of this top–down signal. Infants were exposed to a probabilistic audiovisual association. We find that both groups (full term, preterm) have a comparable stimulus-related response in sensory and frontal lobes and track prediction error in their frontal lobes. However, preterm infants differ from their full-term peers in weaker tracking of prediction error in sensory regions. We infer that top–down signals from the frontal lobe to the sensory regions carry information about prediction error. Using computational learning models and comparing neuroimaging results from full-term and preterm infants, we have uncovered the computational content of top–down signals in young infants when they are engaged in a probabilistic associative learning.


2017 ◽  
Vol 43 (suppl_1) ◽  
pp. S226-S226
Author(s):  
Sonia Bansal ◽  
Barbara Schwartz ◽  
Wilsaan Joiner

Brain ◽  
2019 ◽  
Vol 142 (3) ◽  
pp. 662-673 ◽  
Author(s):  
Aaron L Wong ◽  
Cherie L Marvel ◽  
Jordan A Taylor ◽  
John W Krakauer

Abstract Systematic perturbations in motor adaptation tasks are primarily countered by learning from sensory-prediction errors, with secondary contributions from other learning processes. Despite the availability of these additional processes, particularly the use of explicit re-aiming to counteract observed target errors, patients with cerebellar degeneration are surprisingly unable to compensate for their sensory-prediction error deficits by spontaneously switching to another learning mechanism. We hypothesized that if the nature of the task was changed—by allowing vision of the hand, which eliminates sensory-prediction errors—patients could be induced to preferentially adopt aiming strategies to solve visuomotor rotations. To test this, we first developed a novel visuomotor rotation paradigm that provides participants with vision of their hand in addition to the cursor, effectively setting the sensory-prediction error signal to zero. We demonstrated in younger healthy control subjects that this promotes a switch to strategic re-aiming based on target errors. We then showed that with vision of the hand, patients with cerebellar degeneration could also switch to an aiming strategy in response to visuomotor rotations, performing similarly to age-matched participants (older controls). Moreover, patients could retrieve their learned aiming solution after vision of the hand was removed (although they could not improve beyond what they retrieved), and retain it for at least 1 year. Both patients and older controls, however, exhibited impaired overall adaptation performance compared to younger healthy controls (age 18–33 years), likely due to age-related reductions in spatial and working memory. Patients also failed to generalize, i.e. they were unable to adopt analogous aiming strategies in response to novel rotations. Hence, there appears to be an inescapable obligatory dependence on sensory-prediction error-based learning—even when this system is impaired in patients with cerebellar disease. The persistence of sensory-prediction error-based learning effectively suppresses a switch to target error-based learning, which perhaps explains the unexpectedly poor performance by patients with cerebellar degeneration in visuomotor adaptation tasks.


2021 ◽  
Author(s):  
Jonathan Tsay ◽  
Adrian Haith ◽  
Richard B Ivry ◽  
Hyosub E Kim

While sensory-prediction error (SPE), the difference between predicted and actual sensory feedback, is recognized as the primary signal that drives implicit motor recalibration, recent studies have shown that task error (TE), the difference between sensory feedback and the movement goal, also plays a modulatory role. To systematically examine how SPE and TE collectively shape implicit recalibration, we performed a series of visuomotor learning experiments, introducing perturbations that varied the size of TE using a popular target displacement method and the size of SPE using a clamped visual feedback method. In Experiments 1 & 2, we observed robust sign-dependent changes in hand angle in response to perturbations with both SPE and TE but failed to observe changes in hand angle in response to TE-only perturbations. Yet in Experiments 3 & 4, the magnitude of TE modulated implicit recalibration in the presence of a fixed SPE. Taken together, these results underscore that implicit recalibration is driven by both SPE and TE (Kim, Parvin, & Ivry, 2019), while specifying unappreciated interactions between these two error-based processes. First, TE only impacts implicit calibration when SPE is present. Second, transient changes occurring when the target is displaced to manipulate TE has an attenuating effect on implicit recalibration, perhaps due to attention being directed away from the sensory feedback.


2017 ◽  
Author(s):  
Olivier Codol ◽  
Peter J Holland ◽  
Joseph M Galea

AbstractThe motor system’s ability to adapt to changes in the environment is essential for maintaining accurate movements. During such adaptation several distinct systems are recruited: cerebellar sensory-prediction error learning, success-based reinforcement, and explicit strategy-use. Although much work has focused on the relationship between cerebellar learning and strategy-use, there is little research regarding how reinforcement and strategy-use interact. To address this, participants first learnt a 20° visuomotor displacement. After reaching asymptotic performance, binary, hit-or-miss feedback (BF) was introduced either with or without visual feedback, the latter promoting reinforcement. Subsequently, retention was assessed using no-feedback trials, with half of the participants in each group being instructed to stop using any strategy. Although BF led to an increase in retention of the visuomotor displacement, instructing participants to remove their strategy nullified this effect, suggesting strategy-use is critical to BF-based reinforcement. In a second experiment, we prevented the expression or development of a strategy during BF performance, by either constraining participants to a short preparation time (expression) or by introducing the displacement gradually (development). As both strongly impaired BF performance, it suggests reinforcement requires both the development and expression of a strategy. These results emphasise a pivotal role of strategy-use during reinforcement-based motor learning.


Sign in / Sign up

Export Citation Format

Share Document