scholarly journals Supervised Classification of Operator Functional State Based on Physiological Data: Application to Drones Swarm Piloting

2022 ◽  
Vol 12 ◽  
Author(s):  
Alexandre Kostenko ◽  
Philippe Rauffet ◽  
Gilles Coppin

To improve the safety and the performance of operators involved in risky and demanding missions (like drone operators), human-machine cooperation should be dynamically adapted, in terms of dialogue or function allocation. To support this reconfigurable cooperation, a crucial point is to assess online the operator’s ability to keep performing the mission. The article explores the concept of Operator Functional State (OFS), then it proposes to operationalize this concept (combining context and physiological indicators) on the specific activity of drone swarm monitoring, carried out by 22 participants on simulator SUSIE. With the aid of supervised learning methods (Support Vector Machine, k-Nearest Neighbors, and Random Forest), physiological and contextual are classified into three classes, corresponding to different levels of OFS. This classification would help for adapting the countermeasures to the situation faced by operators.

2013 ◽  
Author(s):  
James C. Christensen ◽  
Justin R. Estepp ◽  
Glenn F. Wilson ◽  
Christopher A. Russell ◽  
Krystal M. Thomas

2017 ◽  
Vol 100 (2) ◽  
pp. 345-350 ◽  
Author(s):  
Ana M Jiménez-Carvelo ◽  
Antonio González-Casado ◽  
Estefanía Pérez-Castaño ◽  
Luis Cuadros-Rodríguez

Abstract A new analytical method for the differentiation of olive oil from other vegetable oils using reversed-phaseLC and applying chemometric techniques was developed. A 3 cm short column was used to obtain the chromatographic fingerprint of the methyl-transesterified fraction of each vegetable oil. The chromatographic analysis tookonly 4 min. The multivariate classification methods used were k-nearest neighbors, partial least-squares (PLS) discriminant analysis, one-class PLS, support vector machine classification, and soft independent modeling of class analogies. The discrimination of olive oil from other vegetable edible oils was evaluated by several classification quality metrics. Several strategies for the classification of the olive oil wereused: one input-class, two input-class, and pseudo two input-class.


2013 ◽  
pp. 786-797
Author(s):  
Ruofei Wang ◽  
Xieping Gao

Classification of protein folds plays a very important role in the protein structure discovery process, especially when traditional sequence alignment methods fail to yield convincing structural homologies. In this chapter, we have developed a two-layer learning architecture, named TLLA, for multi-class protein folds classification. In the first layer, OET-KNN (Optimized Evidence-Theoretic K Nearest Neighbors) is used as the component classifier to find the most probable K-folds of the query protein. In the second layer, we use support vector machine (SVM) to build the multi-class classifier just on the K-folds, generated in the first layer, rather than on all the 27 folds. For multi-feature combination, ensemble strategy based on voting is selected to give the final classification result. The standard percentage accuracy of our method at ~63% is achieved on the independent testing dataset, where most of the proteins have <25% sequence identity with those in the training dataset. The experimental evaluation based on a widely used benchmark dataset has shown that our approach outperforms the competing methods, implying our approach might become a useful vehicle in the literature.


Data mining is currently being used in various applications; In research community it plays a vital role. This paper specify about data mining techniques for the preprocessing and classification of various disease in plants. Since various plants has different diseases based on that each of them has different data sets and different objectives for knowledge discovery. Data Mining Techniques applied on plants that it helps in segmentation and classification of diseased plants, it avoids Oral Inspection and helps to increase in crop productivity. This paper provides various classification techniques Such as K-Nearest Neighbors, Support Vector Machine, Principle component Analysis, Neural Network. Thus among various techniques neural network is effective for disease detection in plants.


Historical documents are important source for knowing culture, language, social activities, educational system, etc. The historical documents are in different languages and evolved over centuries and transformed to present modern language, classification of documents into various eras, recognition of words etc. In this paper, we have proposed a new approach to automatic identification of the age of the historical handwritten document images based on LBP (Local Binary Pattern) and LPQ (Local Phase Quantization) algorithm. The standard historical handwritten document images named as MPS (Medieval Paleographic Scale) dataset which is publicly available is used to experiment. LBP and LPQ descriptors are used to extract the features of the historical document images. Further, documents are classified based on the discriminating feature values using classifiers namely K-NN (K-Nearest Neighbors) and SVM (Support Vector Machine) classifier. The accuracy of historical handwritten document images by K-NN and SVM are 90.7% and 92.8% respectively.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2403
Author(s):  
Jakub Browarczyk ◽  
Adam Kurowski ◽  
Bozena Kostek

The aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was performed on obtained signals. Welch’s method, autoregressive modeling, and discrete wavelet transform were used for feature extraction. Principal component analysis (PCA) was performed in order to reduce the dimensionality of feature vectors. k-Nearest Neighbors (kNN), Support Vector Machines (SVM), and Neural Networks (NN) were employed for classification. Precision, recall, F1 score, as well as a discussion based on statistical analysis, were shown. The paper also contains code utilized in preprocessing and the main part of experiments.


Author(s):  
Ruofei Wang ◽  
Xieping Gao

Classification of protein folds plays a very important role in the protein structure discovery process, especially when traditional sequence alignment methods fail to yield convincing structural homologies. In this chapter, we have developed a two-layer learning architecture, named TLLA, for multi-class protein folds classification. In the first layer, OET-KNN (Optimized Evidence-Theoretic K Nearest Neighbors) is used as the component classifier to find the most probable K-folds of the query protein. In the second layer, we use support vector machine (SVM) to build the multi-class classifier just on the K-folds, generated in the first layer, rather than on all the 27 folds. For multi-feature combination, ensemble strategy based on voting is selected to give the final classification result. The standard percentage accuracy of our method at ~63% is achieved on the independent testing dataset, where most of the proteins have <25% sequence identity with those in the training dataset. The experimental evaluation based on a widely used benchmark dataset has shown that our approach outperforms the competing methods, implying our approach might become a useful vehicle in the literature.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1029
Author(s):  
Shahadat Hussain ◽  
Zahid Raza ◽  
Giorgio Giacomini ◽  
Nandu Goswami

Syncope is the medical condition of loss of consciousness triggered by the momentary cessation of blood flow to the brain. Machine learning techniques have been established to be very effective way to address such problems, where a class label is predicted for given input data. This work presents a Support Vector Machine (SVM) based classification of neuro-mediated syncope evaluated using train–test–split and K-fold cross-validation methods using the patient’s physiological data collected through the Head-up Tilt Test in pure clinical settings. The performance of the model has been analyzed over standard statistical performance indices. The experimental results prove the effectiveness of using SVM-based classification for the proactive diagnosis of syncope.


Author(s):  
Dorian Ruiz Alonso ◽  
Claudia Zepeda Cortés ◽  
Hilda Castillo Zacatelco ◽  
José Luis Carballido Carranza

In this work, we propose the extension of a methodology for the multi-label classification of feedback according to the Hattie and Timperley feedback model, incorporating a hyperparameter tuning stage. It is analyzed whether the incorporation of the hyperparameter tuning stage prior to the execution of the algorithms support vector machines, random forest and multi-label k-nearest neighbors, improves the performance metrics of multi-label classifiers that automatically locate the feedback generated by a teacher to the activities sent by students in online courses on the Blackboard platform at the task, process, regulation, praise and other levels proposed in the feedback model by Hattie and Timperley. The grid search strategy is used to refine the hyperparameters of each algorithm. The results show that the adjustment of the hyperparameters improves the performance metrics for the data set used.


Sign in / Sign up

Export Citation Format

Share Document