scholarly journals Altered Fractional Amplitude of Low-Frequency Fluctuation in Major Depressive Disorder and Bipolar Disorder

2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Qiu ◽  
Min Yang ◽  
Sujuan Li ◽  
Ziwei Teng ◽  
Kun Jin ◽  
...  

Background: Discriminating between major depressive disorder (MDD) and bipolar disorder (BD) remains challenging and cognitive deficits in MDD and BD are generally recognized. In this study, the fractional amplitude of low-frequency fluctuation (fALFF) approach was performed to explore neural activity and cognition in first-episode, drug-naïve BD and MDD patients, as well as the relationship between altered fALFF values and clinical or psychometric variables.Methods: A total of 21 BD patients, 25 MDD patients, and 41 healthy controls (HCs) completed clinical assessments and resting-state functional magnetic resonance imaging (rs-fMRI) scans in this study. The rs-fMRI data were analyzed by fALFF method and Pearson correlation analyses were performed between altered fALFF values and clinical variables or cognition. Support vector machine (SVM) was adopted to identify the three groups from each other with abnormal fALFF values in the brain regions obtained by group comparisons.Results: (1) The fALFF values were significantly different in the frontal lobe, temporal lobe, and left precuneus among three groups. In comparison to HCs, BD showed increased fALFF values in the right inferior temporal gyrus (ITG) and decreased fALFF values in the right middle temporal gyrus, while MDD showed decreased fALFF values in the right cerebellar lobule IV/V. In comparison to MDD, BD showed decreased fALFF values in bilateral posterior cingulate gyrus and the right cerebellar lobule VIII/IX. (2) In the BD group, a negative correlation was found between increased fALFF values in the right ITG and years of education, and a positive correlation was found between decreased fALFF values in the right cerebellar lobule VIII/IX and visuospatial abilities. (3) The fALFF values in the right cerebellar lobule VIII/IX may have the ability to discriminate BD patients from MDD patients, with sensitivity, specificity, and accuracy all over 0.70.Conclusions: Abnormal brain activities were observed in BD and MDD and were related with cognition in BD patients. The abnormality in the cerebellum can be potentially used to identify BD from MDD patients.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Meiqi Yan ◽  
Xilong Cui ◽  
Feng Liu ◽  
Huabing Li ◽  
Renzhi Huang ◽  
...  

Background. Melancholic depression has been assumed as a severe type of major depressive disorder (MDD). We aimed to explore if there were some distinctive alterations in melancholic MDD and whether the alterations could be used to discriminate the melancholic MDD and nonmelancholic MDD. Methods. Thirty-one outpatients with melancholic MDD, thirty-three outpatients with nonmelancholic MDD, and thirty-two age- and gender-matched healthy controls were recruited. All participants were scanned by resting-state functional magnetic resonance imaging (fMRI). Imaging data were analyzed with the network homogeneity (NH) and support vector machine (SVM) methods. Results. Both patient groups exhibited increased NH in the right PCC/precuneus and right angular gyrus and decreased NH in the right middle temporal gyrus compared with healthy controls. Compared with nonmelancholic patients and healthy controls, melancholic patients exhibited significantly increased NH in the bilateral superior medial frontal gyrus and decreased NH in the left inferior temporal gyrus. But merely for melancholic patients, the NH of the right middle temporal gyrus was negatively correlated with TEPS total and contextual anticipatory scores. SVM analysis showed that a combination of NH values in the left superior medial frontal gyrus and left inferior temporal gyrus could distinguish melancholic patients from nonmelancholic patients with accuracy, sensitivity, and specificity of 79.66% (47/59), 70.97% (22/31), and 89.29%(25/28), respectively. Conclusion. Our findings showed distinctive network homogeneity alterations in melancholic MDD which may be potential imaging markers to distinguish melancholic MDD and nonmelancholic MDD.


2020 ◽  
Author(s):  
Fang Xie ◽  
Xiuhang Ruan ◽  
Guoqing Zhang ◽  
Yuting Li ◽  
E Li ◽  
...  

Abstract Background To explore the differences in the fractional amplitude of low-frequency fluctuations (fALFF) at the whole-brain level between young adults with major depressive disorder (MDD) and those with Subclinical depression (SD). Methods Thirty-nine first-episode MDD patients, 30 SD subjects, and 37 healthy controls (HCs) were recruited. All participants underwent resting-state fMRI (Rs-fMRI) scans on a 3T MR scanner. We used the fALFF to explore spontaneous neuronal activity between groups. Results Significant differences in the fALFF were observed among the three groups. Compared with the HCs, an increased fALFF was found in the left cerebellum in MDD patients. When MDD patients were compared with SD subjects, we observed increased fALFF values in the bilateral fusiform gyrus and decreased fALFF values in the right inferior frontal gyrus, right superior frontal gyrus, right middle frontal gyrus, left cuneus and right precuneus. Compared with the HCs, the SD group demonstrated increased fALFF values in the precuneus. Additionally, a positive correlated was revealed between the fALFF values and Hamilton Anxiety Scale (HAMA)score in the right fusiform gyrus in MDD patients. Moreover, the fALFF value were negatively correlated with the Beck Depression Inventory (BDI) score in the right inferior frontal gyrus and with the age in the left fusiform gyrus in SD subjects. Conclusions Our findings suggest that alterations of cognitive and executive networks, default mode networks and visual recognition circuits may contribute to the different neural mechanisms between MDD and SD in young adult subjects.


2021 ◽  
Vol 12 ◽  
Author(s):  
Meiqi Yan ◽  
Yuqiong He ◽  
Xilong Cui ◽  
Feng Liu ◽  
Huabing Li ◽  
...  

Background: Melancholic depression has been viewed as one severe subtype of major depressive disorder (MDD). However, it is unclear whether melancholic depression has distinct changes in brain imaging. We aimed to explore specific or distinctive alterations in melancholic MDD and whether the alterations could be used to separate melancholic MDD from non-melancholic MDD or healthy controls.Materials and Methods: Thirty-one outpatients with melancholic MDD and thirty-three outpatients with non-melancholic MDD and thirty-two age- and gender-matched healthy controls were recruited. All participants were scanned by resting-state functional magnetic resonance imaging (fMRI). Imaging data were analyzed with the regional homogeneity (ReHo) and support vector machine (SVM) methods.Results: Melancholic MDD patients exhibited lower ReHo in the right superior occipital gyrus/middle occipital gyrus than non-melancholic MDD patients and healthy controls. Merely for non-melancholic MDD patients, decreased ReHo in the right middle frontal gyrus was negatively correlated with the total HRSD-17 scores. SVM analysis results showed that a combination of abnormal ReHo in the right fusiform gyrus/cerebellum Crus I and the right superior occipital gyrus/middle occipital gyrus exhibited the highest accuracy of 83.05% (49/59), with a sensitivity of 90.32% (28/31), and a specificity of 75.00% (21/28) for discriminating patients with melancholic MDD from patients with non-melancholic MDD. And a combination of abnormal ReHo in the right fusiform gyrus/cerebellum VI and left postcentral gyrus/precentral gyrus exhibited the highest accuracy of 98.41% (62/63), with a sensitivity of 96.77% (30/31), and a specificity of 100.00%(32/32) for separating patients with melancholic MDD from healthy controls.Conclusion: Our findings showed the distinctive ReHo pattern in patients with melancholic MDD and found brain area that may be associated with the pathophysiology of non-melancholic MDD. Potential imaging markers for discriminating melancholic MDD from non-melancholic MDD or healthy controls were reported.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yujun Gao ◽  
Xi Wang ◽  
Zhenying Xiong ◽  
Hongwei Ren ◽  
Ruoshi Liu ◽  
...  

Objective: Major depressive disorder (MDD) is a psychiatric disorder with serious negative health outcomes; however, there is no reliable method of diagnosis. This study explored the clinical diagnostic value of the fractional amplitude of low-frequency fluctuation (fALFF) based on the support vector machine (SVM) method for the diagnosis of MDD.Methods: A total of 198 first-episode MDD patients and 234 healthy controls were involved in this study, and all participants underwent resting-state functional magnetic resonance imaging (fMRI) scanning. Imaging data were analyzed with the fALFF and SVM methods.Results: Compared with the healthy controls, the first-episode MDD patients showed higher fALFF in the left mid cingulum, right precuneus, and left superior frontal gyrus (SFG). The increased fALFF in these three brain regions was positively correlated with the executive control reaction time (ECRT), and the increased fALFF in the left mid cingulum and left SFG was positively correlated with the 17-item Hamilton Rating Scale for Depression (HRSD-17) scores. The SVM results showed that increased fALFF in the left mid cingulum, right precuneus, and left SFG exhibited high diagnostic accuracy of 72.92% (315/432), 71.76% (310/432), and 73.84% (319/432), respectively. The highest diagnostic accuracy of 76.39% (330/432) was demonstrated for the combination of increased fALFF in the right precuneus and left SFG, along with a sensitivity of 84.34% (167/198), and a specificity of 70.51% (165/234).Conclusion: Increased fALFF in the left mid cingulum, right precuneus, and left SFG may serve as a neuroimaging marker for first-episode MDD. The use of the increased fALFF in the right precuneus and left SFG in combination showed the best diagnostic value.


Sign in / Sign up

Export Citation Format

Share Document