scholarly journals Evaluation of Rapid Library Preparation Protocols for Whole Genome Sequencing Based Outbreak Investigation

2019 ◽  
Vol 7 ◽  
Author(s):  
Helena M. B. Seth-Smith ◽  
Ferdinando Bonfiglio ◽  
Aline Cuénod ◽  
Josiane Reist ◽  
Adrian Egli ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kathy E. Raven ◽  
Sophia T. Girgis ◽  
Asha Akram ◽  
Beth Blane ◽  
Danielle Leek ◽  
...  

AbstractWhole-genome sequencing is likely to become increasingly used by local clinical microbiology laboratories, where sequencing volume is low compared with national reference laboratories. Here, we describe a universal protocol for simultaneous DNA extraction and sequencing of numerous different bacterial species, allowing mixed species sequence runs to meet variable laboratory demand. We assembled test panels representing 20 clinically relevant bacterial species. The DNA extraction process used the QIAamp mini DNA kit, to which different combinations of reagents were added. Thereafter, a common protocol was used for library preparation and sequencing. The addition of lysostaphin, lysozyme or buffer ATL (a tissue lysis buffer) alone did not produce sufficient DNA for library preparation across the species tested. By contrast, lysozyme plus lysostaphin produced sufficient DNA across all 20 species. DNA from 15 of 20 species could be extracted from a 24-h culture plate, while the remainder required 48–72 h. The process demonstrated 100% reproducibility. Sequencing of the resulting DNA was used to recapitulate previous findings for species, outbreak detection, antimicrobial resistance gene detection and capsular type. This single protocol for simultaneous processing and sequencing of multiple bacterial species supports low volume and rapid turnaround time by local clinical microbiology laboratories.


2022 ◽  
Author(s):  
Jason Nguyen ◽  
Rebecca Hickman ◽  
Tracy Lee ◽  
Natalie Prystajecky ◽  
John Tyson

This procedure provides instructions on how to prepare DNA libraries for whole genome sequencing on an Illumina MiSeq or NextSeq using Illumina’s DNA Prep Library Preparation Kit scaled to half reaction volumes with modifications to the post-PCR procedures; tagmentation stop buffer and associated washes are removed and libraries are pooled post PCR then a single size selection is performed. This protocol is used to sequence SARS-CoV-2 using the cDNA/PCR protocol: https://dx.doi.org/10.17504/protocols.io.b3viqn4e


2016 ◽  
Vol 2017 (3) ◽  
pp. pdb.prot094623 ◽  
Author(s):  
Elaine Mardis ◽  
W. Richard McCombie

Author(s):  
Hanjie Shen ◽  
Pengjuan Liu ◽  
Zhanqing Li ◽  
Fang Chen ◽  
Hui Jiang ◽  
...  

AbstractBackgroundSystematic errors can be introduced from DNA amplification during massively parallel sequencing (MPS) library preparation and sequencing array formation. Polymerase chain reaction (PCR)-free genomic library preparation methods were previously shown to improve whole genome sequencing (WGS) quality on the Illumina platform, especially in calling insertions and deletions (InDels). We hypothesized that substantial InDel errors continue to be introduced by the remaining PCR step of DNA cluster generation. In addition to library preparation and sequencing, data analysis methods are also important for the accuracy of the output data.In recent years, several machine learning variant calling pipelines have emerged, which can correct the systematic errors from MPS and improve the data performance of variant calling.ResultsHere, PCR-free libraries were sequenced on the PCR-free DNBSEQ™ arrays from MGI Tech Co., Ltd. (referred to as MGI) to accomplish the first true PCR-free WGS which the whole process is truly not only PCR-free during library preparation but also PCR-free during sequencing. We demonstrated that PCR-based WGS libraries have significantly (about 5 times) more InDel errors than PCR-free libraries.Furthermore, PCR-free WGS libraries sequenced on the PCR-free DNBSEQ™ platform have up to 55% less InDel errors compared to the NovaSeq platform, confirming that DNA clusters contain PCR-generated errors.In addition, low coverage bias and less than 1% read duplication rate was reproducibly obtained in DNBSEQ™ PCR-free using either ultrasonic or enzymatic DNA fragmentation MGI kits combined with MGISEQ-2000. Meanwhile, variant calling performance (single-nucleotide polymorphisms (SNPs) F-score>99.94%, InDels F-score>99.6%) exceeded widely accepted standards using machine learning (ML) methods (DeepVariant or DNAscope).ConclusionsEnabled by the new PCR-free library preparation kits, ultra high-thoughput PCR-free sequencers and ML-based variant calling, true PCR-free DNBSEQ™ WGS provides a powerful solution for improving WGS accuracy while reducing cost and analysis time, thus facilitating future precision medicine, cohort studies, and large population genome projects.


Author(s):  
Carlo Casanova ◽  
Elia Lo Priore ◽  
Adrian Egli ◽  
Helena M. B. Seth-Smith ◽  
Lorenz Räber ◽  
...  

Abstract Background A number of episodes of nosocomial Agrobacterium spp. bacteremia (two cases per year) were observed at Bern University Hospital, Switzerland, from 2015 to 2017. This triggered an outbreak investigation. Methods Cases of Agrobacterium spp. bacteremias that occurred between August 2011 and February 2017 were investigated employing line lists, environmental sampling, rapid protein- (MALDI-TOF MS), and genome-based typing (pulsed field gel electrophoresis and whole genome sequencing) of the clinical isolates. Results We describe a total of eight bacteremia episodes due to A. radiobacter (n = 2), Agrobacterium genomovar G3 (n = 5) and A. pusense (n = 1). Two tight clusters were observed by WGS typing, representing the two A. radiobacter isolates (cluster I, isolated in 2015) and four of the Agrobacterium genomovar G3 isolates (cluster II, isolated in 2016 and 2017), suggesting two different point sources. The epidemiological investigations revealed two computer tomography (CT) rooms as common patient locations, which correlated with the two outbreak clusters. MALDI-TOF MS permitted faster evaluation of strain relatedness than DNA-based methods. High resolution WGS-based typing confirmed the MALDI-TOF MS clustering. Conclusions We report clinical and epidemiological characteristics of two outbreak clusters with Agrobacterium. spp. bacteremia likely acquired during CT contrast medium injection and highlight the use of MALDI-TOF MS as a rapid tool to assess relatedness of rare gram-negative pathogens in an outbreak investigation.


2021 ◽  
Vol 5 (2) ◽  
pp. 24
Author(s):  
Dino Pećar ◽  
Ivana Čeko ◽  
Lana Salihefendić ◽  
Rijad Konjhodžić

Monitoring of the lineages SARS-CoV-2 is equally important in a fight against COVID-19 epidemics, as is regular RT - PCR testing. Ion AmpliSeq Library kit plus is a robust and validated protocol for library preparation, but certain optimizations for better sequencing results were required. Clinical SARS-CoV-2 samples were transported in three different viral transport mediums (VTM), on arrival at the testing lab, samples were stored on -20OC. Viral RNA isolation was done on an automatic extractor using a magnetic beads-based protocol. Screening for positive SARS-CoV-2 samples was performed on RT–PCR with IVD certified detection kit. This study aims to present results as follows: impact of first PCR cycle variation on library quantity, comparison of VTMs with a quantified library, maximum storage time of virus and correlation between used cDNA synthesis kit with generated target base coverage. Our results confirmed the adequacy of the three tested VTMs for SARS-CoV-2 whole-genome sequencing. Tested cDNA synthesis kits are valid for NGS library preparation and all kits give good quality cDNA uniformed in viral sequence coverage. Results of this report are useful for applicative scientists who work on SARS-CoV-2 whole-genome sequencing to compare and apply good laboratory practice for optimal preparation of the NGS library.


Sign in / Sign up

Export Citation Format

Share Document