scholarly journals Reconfigurable Intelligent Surface-Assisted Bluetooth Low Energy Link in Metal Enclosure

Author(s):  
Mir Lodro ◽  
Gabriele Gradoni ◽  
Jean-Baptiste Gros ◽  
Steve Greedy ◽  
Geoffroy Lerosey

Reconfigurable intelligent surface (RIS) technology is at the forefront for its transformative role in future wireless communication systems such as wireless local area networks (WLAN), sixth-generation (6G) communication, and internet-of-things (IoT). This paper presents RIS-assisted Bluetooth low energy (BLE) communication links in neighbor discovery mode. We optimized the packet error rate (PER) performance of the BLE communication link in a highly reflecting metal enclosure environment. We used one RIS for the PER optimization of four BLE physical (PHY) modes. Then, we used two RISs simultaneously in a distributed and centralized manner to further optimize the PER of all BLE PHY modes. We found PER optimization using two RISs is better than the PER optimization using one RIS. Additionally, PER optimization using a centralized arrangement of RISs outperformed PER optimization using distributed arrangement. We found the coded BLE modes i.e., LE500K and LE125K show lower PER than the uncoded counterpart i.e., LE1M and LE2M. This is because uncoded BLE PHY modes have higher data rates than the coded BLE PHY modes. Because of additional channel power gains introduced by RIS-based passive beamforming, the PER of coded and uncoded BLE PHY modes is further reduced.

Author(s):  
A. Z. Yonis

<p><span lang="EN-US">IEEE 802.11ac based wireless local area network (WLAN) is emerging WiFi standard at 5 GHz, it is new gigabit-per-second standard providing premium services. IEEE 802.11ac accomplishes its crude speed increment by pushing on three distinct measurements firstly is more channel holding, expanded from a maximum of 80 MHz up to 160 MHz modes. Secondly, the denser modulation, now using 256-QAM, it has the ability to increase the data rates up to 7 Gbps using an 8×8 multiple input multiple output (MIMO). Finally, it provides high resolution for both narrow and medium bandwidth channels. This work presents a study to improve the performance of IEEE 802.11ac based WLAN system.</span></p>


2017 ◽  
Vol 38 (3) ◽  
Author(s):  
Mehtab Singh

AbstractInter-satellite communication links are very crucial between satellites orbiting around the earth in order to transmit information between them and also for the purpose of data relaying from one satellite station to other stations and ground stations. Inter-satellite optical wireless communication (IsOWC) links involve the application of optical wireless signals as compared to radio frequency signals used in traditional satellite communication systems. One of the major problems leading to the performance degradation of IsOWC link is the signal degradation due to satellite vibrations also known as pointing errors. In this paper, the performance of an IsOWC communication link has been investigated for different system parameters such as data transmission rates, antenna aperture diameter, transmission power levels, operating wavelength and responsivity of photodiode by analyzing


2021 ◽  
Vol 4 (2) ◽  
pp. 1-8
Author(s):  
Shurooq M. Abdulkhudhur ◽  
Abdulkareem A. Kadhim

Huge data rates have been provided by 5G wireless communication systems using millimeter wave (mmWave) band that have frequencies ranging from 30 to 300 GHz.  mmWave provides much wider bandwidth than the existing 4G band.  The 5G network deals with massive number of devices.  This presents many challenges including capacity, end to end delay, data rate, and very large number of connections.  In this paper, the main task is to apply network coding to 5G mmWave communication system to increase the throughput of the communication links.  Simple packet-based network coding schemes using butterfly network topology are simulated.  The two network coding schemes considered here are Physical Layer Network Coding (PLNC) and Network Layer Network Coding (NLNC).   Models of Additive White Gaussian Noise (AWGN) and mmWave indoor fading channels are considered in the work using Quadrature Phase Shift Keying (QPSK) modulation. The results of the tests showed that the use of both NLNC and PLNC improved throughput in comparison to uncoded system.  Using PLNC increased the Bit Error Rate (BER) and the Packet Error Rate (PER), while NLNC scheme showed almost identical error performance to uncoded system over mmWave fading channel.  The results show that network coding improved throughput when compared.


2012 ◽  
Vol 16 (9) ◽  
pp. 1439-1441 ◽  
Author(s):  
Jia Liu ◽  
Canfeng Chen ◽  
Yan Ma

Sign in / Sign up

Export Citation Format

Share Document