scholarly journals A Bayesian Deep Neural Network for Safe Visual Servoing in Human–Robot Interaction

2021 ◽  
Vol 8 ◽  
Author(s):  
Lei Shi ◽  
Cosmin Copot ◽  
Steve Vanlanduit

Safety is an important issue in human–robot interaction (HRI) applications. Various research works have focused on different levels of safety in HRI. If a human/obstacle is detected, a repulsive action can be taken to avoid the collision. Common repulsive actions include distance methods, potential field methods, and safety field methods. Approaches based on machine learning are less explored regarding the selection of the repulsive action. Few research works focus on the uncertainty of the data-based approaches and consider the efficiency of the executing task during collision avoidance. In this study, we describe a system that can avoid collision with human hands while the robot is executing an image-based visual servoing (IBVS) task. We use Monte Carlo dropout (MC dropout) to transform a deep neural network (DNN) to a Bayesian DNN, and learn the repulsive position for hand avoidance. The Bayesian DNN allows IBVS to converge faster than the opposite repulsive pose. Furthermore, it allows the robot to avoid undesired poses that the DNN cannot avoid. The experimental results show that Bayesian DNN has adequate accuracy and can generalize well on unseen data. The predictive interval coverage probability (PICP) of the predictions along x, y, and z directions are 0.84, 0.94, and 0.95, respectively. In the space which is unseen in the training data, the Bayesian DNN is also more robust than a DNN. We further implement the system on a UR10 robot, and test the robustness of the Bayesian DNN and the IBVS convergence speed. Results show that the Bayesian DNN can avoid the poses out of the reach range of the robot and it lets the IBVS task converge faster than the opposite repulsive pose.1

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6674
Author(s):  
Wookyong Kwon ◽  
Yongsik Jin ◽  
Sang Jun Lee

Human-robot interaction has received a lot of attention as collaborative robots became widely utilized in many industrial fields. Among techniques for human-robot interaction, collision identification is an indispensable element in collaborative robots to prevent fatal accidents. This paper proposes a deep learning method for identifying external collisions in 6-DoF articulated robots. The proposed method expands the idea of CollisionNet, which was previously proposed for collision detection, to identify the locations of external forces. The key contribution of this paper is uncertainty-aware knowledge distillation for improving the accuracy of a deep neural network. Sample-level uncertainties are estimated from a teacher network, and larger penalties are imposed for uncertain samples during the training of a student network. Experiments demonstrate that the proposed method is effective for improving the performance of collision identification.


2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


2020 ◽  
Vol 10 (21) ◽  
pp. 7817
Author(s):  
Ivana Marin ◽  
Ana Kuzmanic Skelin ◽  
Tamara Grujic

The main goal of any classification or regression task is to obtain a model that will generalize well on new, previously unseen data. Due to the recent rise of deep learning and many state-of-the-art results obtained with deep models, deep learning architectures have become one of the most used model architectures nowadays. To generalize well, a deep model needs to learn the training data well without overfitting. The latter implies a correlation of deep model optimization and regularization with generalization performance. In this work, we explore the effect of the used optimization algorithm and regularization techniques on the final generalization performance of the model with convolutional neural network (CNN) architecture widely used in the field of computer vision. We give a detailed overview of optimization and regularization techniques with a comparative analysis of their performance with three CNNs on the CIFAR-10 and Fashion-MNIST image datasets.


2020 ◽  
Vol 10 (5) ◽  
pp. 1657 ◽  
Author(s):  
Jieun Baek ◽  
Yosoon Choi

This paper proposes a deep neural network (DNN)-based method for predicting ore production by truck-haulage systems in open-pit mines. The proposed method utilizes two DNN models that are designed to predict ore production during the morning and afternoon haulage sessions, respectively. The configuration of the input nodes of the DNN models is based on truck-haulage conditions and corresponding operation times. To verify the efficacy of the proposed method, training data for the DNN models were generated by processing packet data collected over the two-month period December 2018 to January 2019. Subsequently, following training under different hidden-layer conditions, it was observed that the prediction accuracy of morning ore production was highest when the number of hidden layers and number of corresponding nodes were four and 50, respectively. The corresponding values of the determination coefficient and mean absolute percentage error (MAPE) were 0.99% and 4.78%, respectively. Further, the prediction accuracy of afternoon ore production was highest when the number of hidden layers was four and the corresponding number of nodes was 50. This yielded determination coefficient and MAPE values of 0.99% and 5.26%, respectively.


Author(s):  
Akimul Prince ◽  
Biswanath Samanta

The paper presents a control approach based on vertebrate neuromodulation and its implementation on an autonomous robot platform. A simple neural network is used to model the neuromodulatory function for generating context based behavioral responses to sensory signals. The neural network incorporates three types of neurons — cholinergic and noradrenergic (ACh/NE) neurons for attention focusing and action selection, dopaminergic (DA) neurons for curiosity-seeking, and serotonergic (5-HT) neurons for risk aversion behavior. The implementation of the neuronal model on a relatively simple autonomous robot illustrates its interesting behavior adapting to changes in the environment. The integration of neuromodulation based robots in the study of human-robot interaction would be worth considering in future.


Sign in / Sign up

Export Citation Format

Share Document