scholarly journals Undulatory Swimming Performance Explored With a Biorobotic Fish and Measured by Soft Sensors and Particle Image Velocimetry

2022 ◽  
Vol 8 ◽  
Author(s):  
Fabian Schwab ◽  
Fabian Wiesemüller ◽  
Claudio Mucignat ◽  
Yong-Lae Park ◽  
Ivan Lunati ◽  
...  

Due to the difficulty of manipulating muscle activation in live, freely swimming fish, a thorough examination of the body kinematics, propulsive performance, and muscle activity patterns in fish during undulatory swimming motion has not been conducted. We propose to use soft robotic model animals as experimental platforms to address biomechanics questions and acquire understanding into subcarangiform fish swimming behavior. We extend previous research on a bio-inspired soft robotic fish equipped with two pneumatic actuators and soft strain sensors to investigate swimming performance in undulation frequencies between 0.3 and 0.7 Hz and flow rates ranging from 0 to 20 cms in a recirculating flow tank. We demonstrate the potential of eutectic gallium–indium (eGaIn) sensors to measure the lateral deflection of a robotic fish in real time, a controller that is able to keep a constant undulatory amplitude in varying flow conditions, as well as using Particle Image Velocimetry (PIV) to characterizing swimming performance across a range of flow speeds and give a qualitative measurement of thrust force exerted by the physical platform without the need of externally attached force sensors. A detailed wake structure was then analyzed with Dynamic Mode Decomposition (DMD) to highlight different wave modes present in the robot’s swimming motion and provide insights into the efficiency of the robotic swimmer. In the future, we anticipate 3D-PIV with DMD serving as a global framework for comparing the performance of diverse bio-inspired swimming robots against a variety of swimming animals.

2018 ◽  
Vol 140 (3) ◽  
Author(s):  
James Schock ◽  
Jason Dahl

Two methods are investigated to simultaneously obtain both three-dimensional (3D) velocity field and free surface elevations (FSEs) measurements near a surface piercing foil, while limiting the equipment. The combined velocity field and FSE measurements are obtained specifically for the validation of numerical methods requiring simultaneous field data and free surface measurements for a slender body shape. Both methods use stereo particle image velocimetry (SPIV) to measure three component velocities in the flow field and both methods use an off the shelf digital camera with a laser intersection line to measure FSEs. The first method is performed using a vertical laser sheet oriented parallel to the foil chord line. Through repetition of experiments with repositioning of the laser, a statistical representation of the three-dimensional flow field and surface elevations is obtained. The second method orients the vertical laser sheet such that the foil chord line is orthogonal to the laser sheet. A single experiment is performed with this method to measure the three-dimensional three component (3D3C) flow field and free surface, assuming steady flow conditions, such that the time dimension is used to expand the flow field in 3D space. The two methods are compared using dynamic mode decomposition and found to be comparable in the primary mode. Utilizing these methods produces results that are acceptable for use in numerical methods verification, at a fraction of the capital and computing cost associated with two plane or tomographic particle image velocimetry (PIV).


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Emily J. Berg ◽  
Risa J. Robinson

Emphysema is a progressive lung disease that involves permanent destruction of the alveolar walls. Fluid mechanics in the pulmonary region and how they are altered with the presence of emphysema are not well understood. Much of our understanding of the flow fields occurring in the healthy pulmonary region is based on idealized geometries, and little attention has been paid to emphysemic geometries. The goal of this research was to utilize actual replica lung geometries to gain a better understanding of the mechanisms that govern fluid motion and particle transport in the most distal regions of the lung and to compare the differences that exist between healthy and emphysematous lungs. Excised human healthy and emphysemic lungs were cast, scanned, graphically reconstructed, and used to fabricate clear, hollow, compliant models. Three dimensional flow fields were obtained experimentally using stereoscopic particle image velocimetry techniques for healthy and emphysematic breathing conditions. Measured alveolar velocities ranged over two orders of magnitude from the duct entrance to the wall in both models. Recirculating flow was not found in either the healthy or the emphysematic model, while the average flow rate was three times larger in emphysema as compared to healthy. Diffusion dominated particle flow, which is characteristic in the pulmonary region of the healthy lung, was not seen for emphysema, except for very small particle sizes. Flow speeds dissipated quickly in the healthy lung (60% reduction in 0.25 mm) but not in the emphysematic lung (only 8% reduction 0.25 mm). Alveolar ventilation per unit volume was 30% smaller in emphysema compared to healthy. Destruction of the alveolar walls in emphysema leads to significant differences in flow fields between the healthy and emphysemic lung. Models based on replica geometry provide a useful means to quantify these differences and could ultimately improve our understanding of disease progression.


Author(s):  
W Choi ◽  
B-C Choi

The air entrainment characteristics of a transient high-pressure diesel spray were investigated with respect to time and location for injection pressures ( Pinj = 76 or 137 MPa) and ambient density (ρa = 15.6 kg/m3) under the non-evaporating condition (303 K). A particle image velocimetry analysis was introduced and some parameters were defined to express air entrainment characteristics. The air entrainment rate increased greatly as the flow moved downstream owing to a larger contact surface area and a recirculating flow. Higher pressure led to a greater entrainment rate with higher effectiveness. The speed (spray tip and front ambient gas) and volume (spray and laterally entrained gas) relations suggested the possibility for the renewal against the lateral-dominant entrainment mechanism.


2012 ◽  
Vol 9 (72) ◽  
pp. 1674-1684 ◽  
Author(s):  
Jian-Yuan Su ◽  
Shang-Chieh Ting ◽  
Yu-Hung Chang ◽  
Jing-Tang Yang

We demonstrate experimentally that a passerine exploits tail spreading to intercept the downward flow induced by its wings to facilitate the recovery of its posture. The periodic spreading of its tail by the White-eye bird exhibits a phase correlation with both wingstroke motion and body oscillation during hovering flight. During a downstroke, a White-eye's body undergoes a remarkable pitch-down motion, with the tail undergoing an upward swing. This pitch-down motion becomes appropriately suppressed at the end of the downstroke; the bird's body posture then recovers gradually to its original status. Employing digital particle-image velocimetry, we show that the strong downward flow induced by downstroking the wings serves as an external jet flow impinging upon the tail, providing a depressing force on the tail to counteract the pitch-down motion of the bird's body. Spreading of the tail enhances a rapid recovery of the body posture because increased forces are experienced. The maximum force experienced by a spread tail is approximately 2.6 times that of a non-spread tail.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 429
Author(s):  
Hassan H. Assoum ◽  
Jana Hamdi ◽  
Marwan Alkheir ◽  
Kamel Abed Meraim ◽  
Anas Sakout ◽  
...  

Impinging jets are encountered in ventilation systems and many other industrial applications. Their flows are three-dimensional, time-dependent, and turbulent. These jets can generate a high level of noise and often present a source of discomfort in closed areas. In order to reduce and control such mechanisms, one should investigate the flow dynamics that generate the acoustic field. The purpose of this study is to investigate the flow dynamics and, more specifically, the coherent structures involved in the acoustic generation of these jets. Model reduction techniques are commonly used to study the underlying mechanisms by decomposing the flow into coherent structures. The dynamic mode decomposition (DMD) is an equation-free method that relies only on the system’s data taken either through experiments or through numerical simulations. In this paper, the DMD technique is applied, and the spatial modes and their frequencies are presented. The temporal content of the DMD’s modes is then correlated with the acoustic signal. The flow is generated by a rectangular jet impinging on a slotted plate (for a Reynolds number Re = 4458) and its kinematic field is obtained via the tomographic particle image velocimetry technique (TPIV). The findings of this research highlight the coherent structures signature in the DMD’s spectral content and show the cross correlations between the DMD’s modes and the acoustic field.


Author(s):  
Dechen Wei ◽  
Zhiwei Shi ◽  
Xi Geng ◽  
Haisong Ang

To study wing-body rock, various tests were used for the canard-configuration models in the wind tunnel, including free rolling, disturbance on free rolling, static moment measurements, dynamic derivative measurements, smoke wire method and particle image velocimetry. The models also have a chine forebody, strake wings, main wings and a vertical tail. In the tests, the canard deflection angles are 0° and 20° relative to the axis of the body. First, the roll angle time histories were obtained by free rolling motion and disturbed motion; the results demonstrate that both canard-configuration models have nonzero mean roll angles. In particular, the existence of the other larger nonzero mean roll angles on the same side is a curious aspect at the critical pitch angle, such as at θ = 37° for the model with canard deflection of 20°. Next, static moment tests and dynamic derivative tests demonstrate that although the roll angle time histories are non-limit cycle motions, they are irregularly self-excited oscillation under the influence of multi-vortex structures. Finally, the constituent parts of structures over wing bodies and the flow mechanism of abruptly jumping from an equilibrium roll angle to the other on the same roll side were revealed by the smoke wire and particle image velocimetry measurements.


Sign in / Sign up

Export Citation Format

Share Document