scholarly journals Performance Modeling and Simulation for Water Distribution Networks

2021 ◽  
Vol 3 ◽  
Author(s):  
Amin Ganjidoost ◽  
Mark A. Knight ◽  
Andre J. A. Unger ◽  
Carl T. Haas

This study develops an implementation framework for asset management strategic planning of water distribution networks to meet sustainable infrastructure, socio-political, and financial targets over the life cycle of the infrastructure. The proposed framework is comprised of three decision-making layers: (1) Visions and Values, (2) Function, and (3) Performance. The asset management strategy framework is implemented and validated by demonstrating functionality and value by using data from three water utilities in Canada. The Visions and Values layer is set to meet the needs of the water utilities' stakeholders. The Function layer uses an advanced system dynamics model to simulate and forecast the system's future behavior. The Performance layer benchmarks, compares, and graphically illustrates the situation and performance of water utilities against each other regardless of their size. Benchmarking results indicate that all three water utilities can sustainably meet the strategic targets established in the Visions and Values layer of the asset management strategy over the benchmarking period. The impact of the desired cash reserve on infrastructure and financial benchmarking performance indicators is also investigated to explore the “optimal” combination of allowable fee-hike and rehabilitation rates using the contour plots developed over the benchmarking period. The results indicate that the optimal combinations of allowable fee-hike of ~8% per year and rehabilitation rate of 1.3% per year along with a 1–4% cash reserve, depends on the network condition, will allow water utilities to have sufficient funds to meet their strategic targets. The performance modeling and simulation approach presented in this study represents a powerful tool for other utilities to develop optimal strategic and operational plans for their networks and thus better service to their stakeholders.

Author(s):  
Dionysios Nikolopoulos ◽  
Georgios Moraitis ◽  
Dimitrios Bouziotas ◽  
Archontia Lykou ◽  
George Karavokiros ◽  
...  

<p>Emergent threats in the water sector have the form of cyber-physical attacks that target SCADA systems of water utilities. Examples of attacks include chemical/biological contamination, disruption of communications between network elements and manipulating sensor data. RISKNOUGHT is an innovative cyber-physical stress testing platform, capable of modelling water distribution networks as cyber-physical systems. The platform simulates information flow of the cyber layer’s networking and computational elements and the feedback interactions with the physical processes under control. RISKNOUGHT utilizes an EPANET-based solver with pressure-driven analysis functionality for the physical process and a customizable network model for the SCADA system representation, which is capable of implementing complex control logic schemes within a simulation. The platform enables the development of composite cyber-physical attacks on various elements of the SCADA including sensors, actuators and PLCs, assessing the impact they have on the hydraulic response of the distribution network, the quality of supplied water and the level of service to consumers. It is envisaged that this platform could help water utilities navigate the ever-changing risk landscape of the digital era and help address some of the modern challenges due to the ongoing transformation of water infrastructure into cyber-physical systems.</p>


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 576 ◽  
Author(s):  
Do Yoo ◽  
Dong Chang ◽  
Yang Song ◽  
Jung Lee

This study proposed a pressure driven entropy method (PDEM) that determines a priority order of pressure gauge locations, which enables the impact of abnormal condition (e.g., pipe failures) to be quantitatively identified in water distribution networks (WDNs). The method developed utilizes the entropy method from information theory and pressure driven analysis (PDA), which is the latest hydraulic analysis method. The conventional hydraulic approach has problems in determining the locations of pressure gauges, attributable to unrealistic results under abnormal conditions (e.g., negative pressure). The proposed method was applied to two benchmark pipe networks and one real pipe network. The priority order for optimal locations was produced, and the result was compared to existing approach. The results of the conventional method show that the pressure reduction difference of each node became so excessive, which resulted in a distorted distribution. However, with the method developed, which considers the connectivity of a system and the influence among nodes based on PDA and entropy method results, pressure gauges can be more realistically and reasonably located.


2018 ◽  
Vol 19 (3) ◽  
pp. 846-854 ◽  
Author(s):  
M. A. Pardo ◽  
J. Valdes-Abellan

Abstract Traditional methods for prioritizing the renewal of water are based on heuristic models, such as the number of breaks per length, rule-of-thumb, and records held by the water utility companies. Efficient management of water distribution networks involves factoring in water and energy losses as the key criteria for planning pipe renewal. Prioritizing the replacement of a pipe according to the highest value of unit headloss due to ageing does not consider the impact on water and energy consumption for the whole network. Thus, this paper proposes a methodology to prioritize pipe replacement according to water and energy savings per monetary unit invested – economic prioritization. This renewal plan shows different results if comparing with replacing pipelines with regard to age and it requires calculating water and energy audits of the water distribution networks. Moreover, the required time to recover the investment performed needs to be calculated. The methodology proposed in this work is compared with the unit headloss criterion used in a real water-pressurized network. The results demonstrate that using the unit headloss criterion neither water, energy nor the investment is optimized. Significant water and energy savings are not fully exploited.


2019 ◽  
Vol 63 (4) ◽  
pp. 295-300 ◽  
Author(s):  
Tamás Huzsvár ◽  
Richárd Wéber ◽  
Csaba János Hős

One of the basic infrastructures of every settlement is the water distribution system, which provides clean and potable water for both private houses, industrial consumers and institution establishments. The operational robustness and vulnerabilities of these networks is an essential issue, both for the quality of life and for the preservation of the environment. Even with frequent and careful maintenance, unintentional pipe bursts might occur, and during the reparation time, the damaged section must be isolated hydraulically from the main body of the water distribution network. Due to the size and complexity of these networks, it might not be trivial how to isolate the burst section, especially if one wishes to minimize the impact on the overall system. This paper presents an algorithmic method that is capable of creating isolation plans for real-life networks in a computationally efficient way, based on the graph properties of the network. Besides this segmentation plan, the topological behavior of the structural graph properties was analyzed with the help of the complex network theory to create a method for the quantitative topology based categorization of the water distribution networks.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2321
Author(s):  
Federica Bruno ◽  
Mauro De Marchis ◽  
Barbara Milici ◽  
Domenico Saccone ◽  
Fabrizio Traina

Efficient management of water distribution networks (WDNs) is currently a focal point, especially in countries where water scarcity conditions are more and more amplified by frequent drought periods. In these cases, in fact, pressure becomes the fundamental variable in managing the WDNs. Similarly, WDNs are often obsolete and affected by several points of water losses. Leakages are mainly affected by pressure; in fact, water utilities usually apply the technique of pressure management to reduce physical losses. It is clear how pressure plays a fundamental role in the management of WDNs and in water safety. Even though the technologies are quite mature, these systems are often expensive, especially if a capillarity monitoring system is required; thus, water managers apply the measurement of the flow rate and pressure at very few points. Today, the implementation of the Internet of things (IoT) can be considered a key strategy for monitoring water distribution systems. Once the sensors are installed, in fact, it is relatively easy to build a communication system able to collect and send data from the network. In the proposed study, a smart pressure monitoring system was developed using low-cost hardware and open-source software. The prototype system is composed of an Arduino microcontroller, a printed circuit board, and eight pressure transducers. The efficiency of the proposed tool was compared with a SCADA monitoring system. To investigate on the efficiency of the proposed measurement system, an experimental campaign was carried out at the Environmental Hydraulic Laboratory of the University of Enna (Italy), and hydrostatic as well as hydrodynamic tests were performed. The results showed the ability of the proposed pressure monitor tool to have control of the water pressure in a WDN with a simple, scalable, and economic system. The proposed system can be easily implemented in a real WDN by water utilities, thus improving the knowledge of pressure and increasing the efficiency level of the WDN management.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2617
Author(s):  
Thapelo C. Mosetlhe ◽  
Yskandar Hamam ◽  
Shengzhi Du ◽  
Eric Monacelli

Water losses in Water Distribution Networks (WDNs) are inevitable. This is due to joints interconnections, ageing infrastructure and excessive pressure at lower demand. Pressure control has been showing promising results as a means of minimising water loss. Furthermore, it has been shown that pressure information at critical nodes is often adequate to ensure effective control in the system. In this work, a greedy algorithm for the identification of critical nodes is presented. An emulator for the WDN solution is put forward and used to simulate the dynamics of the WDN. A model-free control scheme based on reinforcement learning is used to interact with the proposed emulator to determine optimal pressure reducing valve settings based on the pressure information from the critical node. Results show that flows through the pipes and nodal pressure heads can be reduced using this scheme. The reduction in flows and nodal pressure leads to reduced leakage flows from the system. Moreover, the control scheme used in this work relies on the current operation of the system, unlike traditional machine learning methods that require prior knowledge about the system.


2021 ◽  
Author(s):  
Francesco Gino Ciliberti ◽  
Luigi Berardi ◽  
Daniele Biagio Laucelli ◽  
Orazio Giustolisi

2018 ◽  
Vol 20 (5) ◽  
pp. 1191-1200 ◽  
Author(s):  
Konstantinos Kakoudakis ◽  
Raziyeh Farmani ◽  
David Butler

Abstract This paper examines the impact of weather conditions on pipe failure in water distribution networks using artificial neural network (ANN) and evolutionary polynomial regression (EPR). A number of weather-related factors over 4 consecutive days are the input of the binary ANN model while the output is the occurrence or not of at least a failure during the following 2 days. The model is able to correctly distinguish the majority (87%) of the days with failure(s). The EPR is employed to predict the annual number of failures. Initially, the network is divided into six clusters based on pipe diameter and age. The last year of the monitoring period is used for testing while the remaining years since the beginning are retained for model development. An EPR model is developed for each cluster based on the relevant training data. The results indicate a strong relationship between the annual number of failures and frequency and intensity of low temperatures. The outputs from the EPR models are used to calculate the failures of the homogenous groups within each cluster proportionally to their length.


Sign in / Sign up

Export Citation Format

Share Document