scholarly journals A Computational Atlas of Tissue-specific Regulatory Networks

2021 ◽  
Vol 1 ◽  
Author(s):  
Chixiang Chen ◽  
Libo Jiang ◽  
Biyi Shen ◽  
Ming Wang ◽  
Christopher H. Griffin ◽  
...  

The pattern of how gene co-regulation varies across tissues determines human health. However, inferring tissue-specific regulatory networks and associating them with human phenotypes represent a substantial challenge because multi-tissue projects, including the GTEx, typically contain expression data measured only at one time point from highly heterogeneous donors. Here, we implement an interdisciplinary framework for assembling and programming genomic data from multiple tissues into fully informative gene networks, encapsulated by a complete set of bi-directional, signed, and weighted interactions, from static expression data. This framework can monitor how gene networks change simultaneously across tissues and individuals, infer gene-driven inter-tissue wiring networks, compare and test topological alterations of gene/tissue networks between health states, and predict how regulatory networks evolve across spatiotemporal gradients. Our framework provides a tool to catalogue a comprehensive encyclopedia of mechanistic gene networks that walk medical researchers through tissues in each individual and through individuals for each tissue, facilitating the translation of multi-tissue data into clinical practices.

F1000Research ◽  
2022 ◽  
Vol 9 ◽  
pp. 1159
Author(s):  
Qian (Vicky) Wu ◽  
Wei Sun ◽  
Li Hsu

Gene expression data have been used to infer gene-gene networks (GGN) where an edge between two genes implies the conditional dependence of these two genes given all the other genes. Such gene-gene networks are of-ten referred to as gene regulatory networks since it may reveal expression regulation. Most of existing methods for identifying GGN employ penalized regression with L1 (lasso), L2 (ridge), or elastic net penalty, which spans the range of L1 to L2 penalty. However, for high dimensional gene expression data, a penalty that spans the range of L0 and L1 penalty, such as the log penalty, is often needed for variable selection consistency. Thus, we develop a novel method that em-ploys log penalty within the framework of an earlier network identification method space (Sparse PArtial Correlation Estimation), and implement it into a R package space-log. We show that the space-log is computationally efficient (source code implemented in C), and has good performance comparing with other methods, particularly for networks with hubs.Space-log is open source and available at GitHub, https://github.com/wuqian77/SpaceLog


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1159
Author(s):  
Qian (Vicky) Wu ◽  
Wei Sun ◽  
Li Hsu

Gene expression data have been used to infer gene-gene networks (GGN) where an edge between two genes implies the conditional dependence of these two genes given all the other genes. Such gene-gene networks are of-ten referred to as gene regulatory networks since it may reveal expression regulation. Most of existing methods for identifying GGN employ penalized regression with L1 (lasso), L2 (ridge), or elastic net penalty, which spans the range of L1 to L2 penalty. However, for high dimensional gene expression data, a penalty that spans the range of L0 and L1 penalty, such as the log penalty, is often needed for variable selection consistency. Thus, we develop a novel method that em-ploys log penalty within the framework of an earlier network identification method space (Sparse PArtial Correlation Estimation), and implement it into a R package space-log. We show that the space-log is computationally efficient (source code implemented in C), and has good performance comparing with other methods, particularly for networks with hubs.Space-log is open source and available at GitHub, https://github.com/wuqian77/SpaceLog


2020 ◽  
Author(s):  
S. Thomas Kelly ◽  
Michael A. Black

SummaryTranscriptomic analysis is used to capture the molecular state of a cell or sample in many biological and medical applications. In addition to identifying alterations in activity at the level of individual genes, understanding changes in the gene networks that regulate fundamental biological mechanisms is also an important objective of molecular analysis. As a result, databases that describe biological pathways are increasingly uesad to assist with the interpretation of results from large-scale genomics studies. Incorporating information from biological pathways and gene regulatory networks into a genomic data analysis is a popular strategy, and there are many methods that provide this functionality for gene expression data. When developing or comparing such methods, it is important to gain an accurate assessment of their performance. Simulation-based validation studies are frequently used for this. This necessitates the use of simulated data that correctly accounts for pathway relationships and correlations. Here we present a versatile statistical framework to simulate correlated gene expression data from biological pathways, by sampling from a multivariate normal distribution derived from a graph structure. This procedure has been released as the graphsim R package on CRAN and GitHub (https://github.com/TomKellyGenetics/graphsim) and is compatible with any graph structure that can be described using the igraph package. This package allows the simulation of biological pathways from a graph structure based on a statistical model of gene expression.


2014 ◽  
Author(s):  
Emma Pierson ◽  
GTEx Consortium ◽  
Daphne Koller ◽  
Alexis Battle ◽  
Sara Mostafavi

To understand the regulation of tissue-specific gene expression, the GTEx Consortium generated RNA-seq expression data for more than thirty distinct human tissues. This data provides an opportunity for deriving shared and tissue-specific gene regulatory networks on the basis of co-expression between genes. However, a small number of samples are available for a majority of the tissues, and therefore statistical inference of networks in this setting is highly underpowered. To address this problem, we infer tissue-specific gene co-expression networks for 35 tissues in the GTEx dataset using a novel algorithm, GNAT, that uses a hierarchy of tissues to share data between related tissues. We show that this transfer learning approach increases the accuracy with which networks are learned. Analysis of these networks reveals that tissue-specific transcription factors are hubs that preferentially connect to genes with tissue-specific functions. Additionally, we observe that genes with tissue-specific functions lie at the peripheries of our networks. We identify numerous modules enriched for Gene Ontology functions, and show that modules conserved across tissues are especially likely to have functions common to all tissues, while modules that are upregulated in a particular tissue are often instrumental to tissue-specific function. Finally, we provide a web tool, available at mostafavilab.stat.ubc.ca/GNAT, which allows exploration of gene function and regulation in a tissue-specific manner.


2016 ◽  
Vol 113 (16) ◽  
pp. 4290-4295 ◽  
Author(s):  
Siqi Wu ◽  
Antony Joseph ◽  
Ann S. Hammonds ◽  
Susan E. Celniker ◽  
Bin Yu ◽  
...  

Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior–posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.


2017 ◽  
Author(s):  
Xiao Liang ◽  
William Chad Young ◽  
Ling-Hong Hung ◽  
Adrian E. Raftery ◽  
Ka Yee Yeung

AbstractBackgroundThe inference of gene regulatory networks is of great interest and has various applications. The recent advances in high-throughout biological data collection have facilitated the construction and understanding of gene regulatory networks in many model organisms. However, the inference of gene networks from large-scale human genomic data can be challenging. Generally, it is difficult to identify the correct regulators for each gene in the large search space, given that the high dimensional gene expression data only provides a small number of observations for each gene.ResultsWe present a Bayesian approach integrating external data sources with knockdown data from human cell lines to infer gene regulatory networks. In particular, we assemble multiple data sources including gene expression data, genome-wide binding data, gene ontology, known pathways and use a supervised learning framework to compute prior probabilities of regulatory relationships. We show that our integrated method improves the accuracy of inferred gene networks. We apply our method to two different human cell lines, which illustrates the general scope of our method.ConclusionsWe present a flexible and systematic framework for external data integration that improves the accuracy of human gene network inference while retaining efficiency. Integrating various data sources of biological information also provides a systematic way to build on knowledge from existing literature.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhi-Qiang Du ◽  
Hao Liang ◽  
Xiao-Man Liu ◽  
Yun-Hua Liu ◽  
Chonglong Wang ◽  
...  

AbstractSuccessful early embryo development requires the correct reprogramming and configuration of gene networks by the timely and faithful execution of zygotic genome activation (ZGA). However, the regulatory principle of molecular elements and circuits fundamental to embryo development remains largely obscure. Here, we profiled the transcriptomes of single zygotes and blastomeres, obtained from in vitro fertilized (IVF) or parthenogenetically activated (PA) porcine early embryos (1- to 8-cell), focusing on the gene expression dynamics and regulatory networks associated with maternal-to-zygote transition (MZT) (mainly maternal RNA clearance and ZGA). We found that minor and major ZGAs occur at 1-cell and 4-cell stages for both IVF and PA embryos, respectively. Maternal RNAs gradually decay from 1- to 8-cell embryos. Top abundantly expressed genes (CDV3, PCNA, CDR1, YWHAE, DNMT1, IGF2BP3, ARMC1, BTG4, UHRF2 and gametocyte-specific factor 1-like) in both IVF and PA early embryos identified are of vital roles for embryo development. Differentially expressed genes within IVF groups are different from that within PA groups, indicating bi-parental and maternal-only embryos have specific sets of mRNAs distinctly decayed and activated. Pathways enriched from DEGs showed that RNA associated pathways (RNA binding, processing, transport and degradation) could be important. Moreover, mitochondrial RNAs are found to be actively transcribed, showing dynamic expression patterns, and for DNA/H3K4 methylation and transcription factors as well. Taken together, our findings provide an important resource to investigate further the epigenetic and genome regulation of MZT events in early embryos of pigs.


Sign in / Sign up

Export Citation Format

Share Document