scholarly journals Pharmacokinetics of Cannabidiol, Cannabidiolic Acid, Δ9-Tetrahydrocannabinol, Tetrahydrocannabinolic Acid and Related Metabolites in Canine Serum After Dosing With Three Oral Forms of Hemp Extract

2020 ◽  
Vol 7 ◽  
Author(s):  
Joseph J. Wakshlag ◽  
Wayne S. Schwark ◽  
Kelly A. Deabold ◽  
Bryce N. Talsma ◽  
Stephen Cital ◽  
...  
1987 ◽  
Vol 244 (2) ◽  
pp. 319-324 ◽  
Author(s):  
Thomas J. Flynn ◽  
Leonard Friedman ◽  
Thomas N. Black ◽  
Norman W. Klein

Author(s):  
Lin Lin ◽  
Piyadarsha Amaratunga ◽  
Jerome Reed ◽  
Pornkamol Huang ◽  
Bridget Lorenz Lemberg ◽  
...  

Abstract Quantitative analysis of Δ9-tetrahydrocannabinol (Δ9-THC) in oral fluid has gained increasing interest in clinical and forensic toxicology laboratories. New medicinal and/or recreational cannabinoid products require laboratories to distinguish different patterns of cannabinoid use. This study validated a high-performance liquid chromatography-tandem mass spectrometry method for 13 different cannabinoids, including (-)-trans-Δ8-tetrahydrocannabinol (Δ8-THC), (-)-trans-Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), Δ9-tetrahydrocannabinolic acid-A (Δ9-THCA-A), cannabidiolic acid (CBDA), 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-Δ9-THC), 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (Δ9-THCCOOH), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabidiorcol (CBD-C1), cannabichromene (CBC), cannabinol (CBN) and cannabigerol (CBG), in oral fluid. Baseline separation was achieved in the entire quantitation range between Δ9-THC and its isomer Δ8-THC. The quantitation range of Δ9-THC, Δ8-THC and CBD was from 0.1 to 800 ng/mL. Two hundred human subject oral fluid samples were analyzed with this method after solid phase extraction. Among the 200 human subject oral fluid samples, all 13 cannabinoid analytes were confirmed in at least one sample. Δ8-THC was confirmed in 11 samples, with or without the presence of Δ9-THC. A high concentration of 11-OH-Δ9-THC or Δ9-THCCOOH (>400 ng/mL) was confirmed in three samples. CBD, Δ9-THCA-A, THCV, CBN and CBG were confirmed in 74, 39, 44, 107 and 112 of the 179 confirmed Δ9-THC-positive samples, respectively. The quantitation of multiple cannabinoids and metabolites in oral fluid simultaneously provides valuable information for revealing cannabinoid consumption and interpreting cannabinoid-induced driving impairment.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Eric Murillo-Rodríguez ◽  
Diana Millán-Aldaco ◽  
Gloria Arankowsky-Sandoval ◽  
Tetsuya Yamamoto ◽  
Roger G. Pertwee ◽  
...  

Abstract Background Cannabidiol (CBD), the non-psychotropic compound from Cannabis sativa, shows positive results on controlling several health disturbances; however, comparable data regarding additional chemical from C. sativa, such as cannabidiolic acid (CBDA), is scarce due to its instability. To address this limitation, a stable CBDA analogue, CBDA methyl ester (HU-580), was synthetized and showed CBDA-like effects. Recently, we described that HU-580 increased wakefulness and wake-related neurochemicals. Objective To extend the comprehension of HU-580´s properties on waking, the c-Fos and NeuN expression in a wake-linked brain area, the hypothalamus was evaluated. Methods c-Fos and NeuN expression in hypothalamic sections were analyzed after the injections of HU-580 (0.1 or 100 μg/kg, i.p.). Results Systemic administrations of HU-580 increased c-Fos and neuronal nuclei (NeuN) expression in hypothalamic nuclei, including the dorsomedial hypothalamic nucleus dorsal part, dorsomedial hypothalamic nucleus compact part, and dorsomedial hypothalamic nucleus ventral part. Conclusion HU-580 increased c-Fos and NeuN immunoreactivity in hypothalamus nuclei suggesting that this drug might modulate the sleep–wake cycle by engaging the hypothalamus.


1980 ◽  
Vol 3 (4) ◽  
pp. 525-534
Author(s):  
Caroline C Whitacre ◽  
Virginia S Mehl ◽  
Raymond W Lang

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Anna-Janina Behrens ◽  
Rebecca M. Duke ◽  
Laudine M. C. Petralia ◽  
Sylvain Lehoux ◽  
Clotilde K. S. Carlow ◽  
...  

2019 ◽  
Author(s):  
Lillian K. Padgitt-Cobb ◽  
Sarah B. Kingan ◽  
Jackson Wells ◽  
Justin Elser ◽  
Brent Kronmiller ◽  
...  

AbstractHop (Humulus lupulus L. var Lupulus) is a diploid, dioecious plant with a history of cultivation spanning more than one thousand years. Hop cones are valued for their use in brewing, and around the world, hop has been used in traditional medicine to treat a variety of ailments. Efforts to determine how biochemical pathways responsible for desirable traits are regulated have been challenged by the large, repetitive, and heterozygous genome of hop. We present the first report of a haplotype-phased assembly of a large plant genome. Our assembly and annotation of the Cascade cultivar genome is the most extensive to date. PacBio long-read sequences from hop were assembled with FALCON and phased with FALCON-Unzip. Using the diploid assembly to assess haplotype variation, we discovered genes under positive selection enriched for stress-response, growth, and flowering functions. Comparative analysis of haplotypes provides insight into large-scale structural variation and the selective pressures that have driven hop evolution. Previous studies estimated repeat content at around 60%. With improved resolution of long terminal retrotransposons (LTRs) due to long-read sequencing, we found that hop is nearly 78% repetitive. Our quantification of repeat content provides context for the size of the hop genome, and supports the hypothesis of whole genome duplication (WGD), rather than expansion due to LTRs. With our more complete assembly, we have identified a homolog of cannabidiolic acid synthase (CBDAS) that is expressed in multiple tissues. The approaches we developed to analyze a phased, diploid assembly serve to deepen our understanding of the genomic landscape of hop and may have broader applicability to the study of other large, complex genomes.


Sign in / Sign up

Export Citation Format

Share Document