scholarly journals Domestic Dogs and Wild Foxes Interactions in a Wildlife-Domestic Interface of North-Central Chile: Implications for Multi-Host Pathogen Transmission

2021 ◽  
Vol 8 ◽  
Author(s):  
Felipe A. Hernández ◽  
Jonatan Manqui ◽  
Carlos Mejías ◽  
Gerardo Acosta-Jamett

Domestic dogs (Canis familiaris) often cohabite at interfaces shared by humans and wildlife, interacting with wild canids as predators, prey, competitors and reservoirs of several multi-host pathogens, such as canid-borne micro and macro parasites that could impact on wildlife, livestock and public health. However, spatio-temporal patterns of indirect interactions as promoters of pathogen transfer between domestic and wild canids are largely unknown. In this study, we used camera traps to describe the activity patterns and habitat use of dogs, chilla (Lycalopex griseus) and culpeo (Lycalopex culpaeus) foxes and identify the local-scale factors that may affect the frequency of dog-fox interactions through an anthropization gradient of the Coquimbo region, Chile. We assessed local-scale variables that may predict the number of interactions between dogs and foxes, and compared the time interval between dog-culpeo and dog-chilla interactions. Our findings suggested that closeness to urbanized zones predicts the frequency of indirect interactions between dogs and foxes. We found higher number of dog-fox interactions (60 interactions) at a periurban site adjacent to two coastal towns (Tongoy and Guanaqueros), compared to other two more undisturbed sites (12 interactions) increasingly distanced from urbanized areas. We showed that dogs interacted more frequently with chilla foxes (57 interactions) than with culpeo foxes (15 interactions), and the first interaction type occurred almost exclusively at the periurban site, where dogs and chillas were more frequently detected than in the other sites. We detected a marked temporal segregation between dogs and foxes, but dog-chilla interactions resulted in shorter time intervals (2.5 median days) compared to dog-culpeo interactions (7.6 median days), suggesting a higher potential risk of pathogen spillover between the first species pairing. Based on previous studies, we suggest periurban zones may constitute a potential focus of pathogen exposure between dog and fox populations in the study area. Our research contributes to improving the knowledge on the spatio-temporal patterns of interspecific contact between invasive and native carnivores within the context of multi-host pathogen dynamics. Our outcomes will inform theoretical epidemiological models designed to predict and minimize the contact risk between domestic and threatened species, guiding effective control strategies at the wildlife-domestic interface.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marco Gustin ◽  
Alessandro Ferrarini

AbstractThe Red-footed Falcon (Falco vespertinus) is a species of high international conservation interest. We analyzed its hunting behavior at the two largest colonies in Italy during the nestling period. Using accurate data-loggers, we tracked three adult Red-footed Falcons in June and July, 2019 and collected 4703 GPS points. We detected clear patterns of hovering and perching activity (HPA) in both time and space. HPA occupied one-third of the Red-footed Falcons’ day, and showed two peaks just after sunrise (between 35 and 40% of the monitoring time) and just before sunset (50‒60%) in both June and July, and minimum (20‒30%) at night and during the hottest time interval (10:00 a.m.‒4:00 p.m.). Almost 40% of HPA occurred within 50 m from nests. Our findings, although preliminary, have important implications for the conservation of these two colonies that are located within two Natura 2000 sites. The detected spatio-temporal patterns of Red-footed Falcons’ hunting behavior suggests the creation of two nested protection belts: the inner one is a narrow belt (up to 50 m from the two rows of trees that host the two colonies) with integral conservation, and hopefully increase the alfalfa crops and fallow land, and the outer belt (50 m‒2 km) with optimized agricultural activities.


2020 ◽  
Vol 287 (1935) ◽  
pp. 20201829 ◽  
Author(s):  
Daniel J. Becker ◽  
Ellen D. Ketterson ◽  
Richard J. Hall

Annual migration is common across animal taxa and can dramatically shape the spatial and temporal patterns of infectious disease. Although migration can decrease infection prevalence in some contexts, these energetically costly long-distance movements can also have immunosuppressive effects that may interact with transmission processes in complex ways. Here, we develop a mechanistic model for the reactivation of latent infections driven by physiological changes or energetic costs associated with migration (i.e. ‘migratory relapse’) and its effects on disease dynamics. We determine conditions under which migratory relapse can amplify or reduce infection prevalence across pathogen and host traits (e.g. infectious periods, virulence, overwinter survival, timing of relapse) and transmission phenologies. We show that relapse at either the start or end of migration can dramatically increase prevalence across the annual cycle and may be crucial for maintaining pathogens with low transmissibility and short infectious periods in migratory populations. Conversely, relapse at the start of migration can reduce the prevalence of highly virulent pathogens by amplifying culling of infected hosts during costly migration, especially for highly transmissible pathogens and those transmitted during migration or the breeding season. Our study provides a mechanistic foundation for understanding the spatio-temporal patterns of relapsing infections in migratory hosts, with implications for zoonotic surveillance and understanding how infection patterns will respond to shifts in migratory propensity associated with environmental change. Further, our work suggests incorporating within-host processes into population-level models of pathogen transmission may be crucial for reconciling the range of migration–infection relationships observed across migratory species.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 444
Author(s):  
Wen Fu ◽  
Camille Bonnet ◽  
Julie Figoni ◽  
Alexandra Septfons ◽  
Raphaëlle Métras

In recent decades, the incidence of Lyme borreliosis (LB) in Europe seems to have increased, underpinning a growing public health concern. LB surveillance systems across the continent are heterogeneous, and the spatial and temporal patterns of LB reports have been little documented. In this study, we explored the spatio-temporal patterns of LB cases reported in France from 2016 to 2019, to describe high-risk clusters and generate hypotheses on their occurrence. The space–time K-function and the Kulldorf’s scan statistic were implemented separately for each year to evaluate space–time interaction between reported cases and searching clusters. The results show that the main spatial clusters, of radius size up to 97 km, were reported in central and northeastern France each year. In 2017–2019, spatial clusters were also identified in more southern areas (near the Alps and the Mediterranean coast). Spatio-temporal clustering occurred between May and August, over one-month to three-month windows in 2016–2017 and in 2018–2019. A strong spatio-temporal interaction was identified in 2018 within 16 km and seven days, suggesting a potential local and intense pathogen transmission process. Ongoing improved surveillance and accounting for animal hosts, vectors, meteorological factors and human behaviors are keys to further elucidate LB spatio-temporal patterns.


2019 ◽  
Vol 38 (2) ◽  
pp. 239-254
Author(s):  
M.B. SINGH ◽  
◽  
NITIN KUMAR MISHRA ◽  

2010 ◽  
Vol 11 (4) ◽  
pp. 428-435 ◽  
Author(s):  
Wenhui KUANG ◽  
Quanqin SHAO ◽  
Jiyuan LIU ◽  
Chaoyang SUN

2019 ◽  
Vol 13 (12) ◽  
pp. e0007916 ◽  
Author(s):  
Yujuan Yue ◽  
Dongsheng Ren ◽  
Xiaobo Liu ◽  
Yujiao Wang ◽  
Qiyong Liu ◽  
...  

2020 ◽  
Vol 117 ◽  
pp. 106565
Author(s):  
Roxana Triguero-Ocaña ◽  
Joaquín Vicente ◽  
Pablo Palencia ◽  
Eduardo Laguna ◽  
Pelayo Acevedo

Sign in / Sign up

Export Citation Format

Share Document