scholarly journals Design of a High-Throughput Real-Time PCR System for Detection of Bovine Respiratory and Enteric Pathogens

2021 ◽  
Vol 8 ◽  
Author(s):  
Nicole B. Goecke ◽  
Bodil H. Nielsen ◽  
Mette B. Petersen ◽  
Lars E. Larsen

Bovine respiratory and enteric diseases have a profound negative impact on animal, health, welfare, and productivity. A vast number of viruses and bacteria are associated with the diseases. Pathogen detection using real-time PCR (rtPCR) assays performed on traditional rtPCR platforms are costly and time consuming and by that limit the use of diagnostics in bovine medicine. To diminish these limitations, we have developed a high-throughput rtPCR system (BioMark HD; Fluidigm) for simultaneous detection of the 11 most important respiratory and enteric viral and bacterial pathogens. The sensitivity and specificity of the rtPCR assays on the high-throughput platform was comparable with that of the traditional rtPCR platform. Pools consisting of positive and negative individual field samples were tested in the high-throughput rtPCR system in order to investigate the effect of an individual sample in a pool. The pool tests showed that irrespective of the size of the pool, a high-range positive individual sample had a high influence on the cycle quantification value of the pool compared with the influence of a low-range positive individual sample. To validate the test on field samples, 2,393 nasal swab and 2,379 fecal samples were tested on the high-throughput rtPCR system as pools in order to determine the occurrence of the 11 pathogens in 100 Danish herds (83 dairy and 17 veal herds). In the dairy calves, Pasteurella multocida (38.4%), rotavirus A (27.4%), Mycoplasma spp. (26.2%), and Trueperella pyogenes (25.5%) were the most prevalent pathogens, while P. multocida (71.4%), Mycoplasma spp. (58.9%), Mannheimia haemolytica (53.6%), and Mycoplasma bovis (42.9%) were the most often detected pathogens in the veal calves. The established high-throughput system provides new possibilities for analysis of bovine samples, since the system enables testing of multiple samples for the presence of different pathogens in the same analysis test even with reduced costs and turnover time.

Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 362
Author(s):  
Ghania Boularias ◽  
Naouelle Azzag ◽  
Clemence Galon ◽  
Ladislav Šimo ◽  
Henri-Jean Boulouis ◽  
...  

Ixodid ticks are hematophagous arthropods considered to be prominent ectoparasite vectors that have a negative impact on cattle, either through direct injury or via the transmission of several pathogens. In this study, we investigated the molecular infection rates of numerous tick-borne pathogens in ticks sampled on cattle from the Kabylia region, northeastern Algeria, using a high-throughput microfluidic real-time PCR system. A total of 235 ticks belonging to seven species of the genera Rhipicephalus, Hyalomma, and Ixodes were sampled on cattle and then screened for the presence of 36 different species of bacteria and protozoans. The most prevalent tick-borne microorganisms were Rickettsia spp. at 79.1%, followed by Francisella-like endosymbionts (62.9%), Theileria spp. (17.8%), Anaplasma spp. (14.4%), Bartonella spp. (6.8%), Borrelia spp. (6.8%), and Babesia spp. (2.5%). Among the 80.4% of ticks bearing microorganisms, 20%, 36.6%, 21.7%, and 2.1% were positive for one, two, three, and four different microorganisms, respectively. Rickettsia aeschlimannii was detected in Hyalomma marginatum, Hyalomma detritum, and Rhipicephalus bursa ticks. Rickettsia massiliae was found in Rhipicephalus sanguineus, and Rickettsiamonacensis and Rickettsia helvetica were detected in Ixodesricinus. Anaplasma marginale was found in all identified tick genera, but Anaplasma centrale was detected exclusively in Rhipicephalus spp. ticks. The DNA of Borrelia spp. and Bartonella spp. was identified in several tick species. Theileria orientalis was found in R. bursa, R. sanguineus, H. detritum, H. marginatum, and I. ricinus and Babesia bigemina was found in Rhipicephalus annulatus and R. sanguineus. Our study highlights the importance of tick-borne pathogens in cattle in Algeria.


2019 ◽  
Vol 20 (2) ◽  
pp. 6-11
Author(s):  
Aly El-Kenawy ◽  
Mohamed El-Tholoth ◽  
Emad A

In the present study, a total of 16 samples including feather follicle epithelium, ovary, spleen and kidney (4 samples for each organ) were collected from diseased chicken flocks suspected to be infected with Marek’s disease virus (MDV) at Dakahlia Governorate, Egypt during the period from October 2016 to October 2017. Each sample was pooled randomly from three to five birds (90 to 360 days old). The isolation of the suspected virus from the collected samples was carried out via chorioallantoic membranes (CAMs) of 12 days old embryonated chicken eggs (ECEs). Three egg passages were carried out for each sample. Hyperimmune serum was prepared against standard MDV. MDV in both field and egg passaged samples (after 3rd passage) was identified by agar gel precipitation test (AGPT) and indirect fluorescence antibody test (IFAT). Molecular identification of virus was carried out by conventional polymerase chain reaction (PCR) and real- time PCR in four selected samples. The results revealed that 14 samples (87.5%) including 4 (100%) samples from feather follicle epithelium, ovary and kidney and 2 (50%) samples from spleen, showed positive results in virus isolation after 3rd passage. The positive results percentage by AGPT for field samples were 50% (8 out of 16 samples), while after the 3rd passage in ECEs were 37.5% (6 out of 16 samples) and the positive results percentage by IFAT for field samples were 62.5% (10 out of 16 samples), while after the 3rd passage in ECEs were 81.25 % (13 out of 16 samples). Viral nucleic acid was detected in all selected samples by conventional and real- time PCR. The results indicate that feather follicle epithelium is the best organ for MDV detection. IFAT is superior over AGPT in virus detection. Conventional and real - time PCR could be efficiently used for molecular detection of the virus.


2017 ◽  
Vol 39 (2) ◽  
pp. 175-184
Author(s):  
Z. Zheng ◽  
P. Zhang ◽  
G. He ◽  
K. Liao ◽  
Z. Wang ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1358
Author(s):  
Brigitte Sigrist ◽  
Jessica Geers ◽  
Sarah Albini ◽  
Dennis Rubbenstroth ◽  
Nina Wolfrum

Avian bornaviruses were first described in 2008 as the causative agents of proventricular dilatation disease (PDD) in parrots and their relatives (Psittaciformes). To date, 15 genetically highly diverse avian bornaviruses covering at least five viral species have been discovered in different bird orders. Currently, the primary diagnostic tool is the detection of viral RNA by conventional or real-time RT-PCR (rRT-PCR). One of the drawbacks of this is the usage of either specific assays, allowing the detection of one particular virus, or of assays with a broad detection spectrum, which, however, do not allow for the simultaneous specification of the detected virus. To facilitate the simultaneous detection and specification of avian bornaviruses, a multiplex real-time RT-PCR assay was developed. Whole-genome sequences of various bornaviruses were aligned. Primers were designed to recognize conserved regions within the overlapping X/P gene and probes were selected to detect virus species-specific regions within the target region. The optimization of the assay resulted in the sensitive and specific detection of bornaviruses of Psittaciformes, Passeriformes, and aquatic birds. Finally, the new rRT-PCR was successfully employed to detect avian bornaviruses in field samples from various avian species. This assay will serve as powerful tool in epidemiological studies and will improve avian bornavirus detection.


2012 ◽  
Vol 75 (4) ◽  
pp. 743-747 ◽  
Author(s):  
BWALYA LUNGU ◽  
W. DOUGLAS WALTMAN ◽  
ROY D. BERGHAUS ◽  
CHARLES L. HOFACRE

Conventional culture methods have traditionally been considered the “gold standard” for the isolation and identification of foodborne bacterial pathogens. However, culture methods are labor-intensive and time-consuming. A Salmonella enterica serotype Enteritidis–specific real-time PCR assay that recently received interim approval by the National Poultry Improvement Plan for the detection of Salmonella Enteritidis was evaluated against a culture method that had also received interim National Poultry Improvement Plan approval for the analysis of environmental samples from integrated poultry houses. The method was validated with 422 field samples collected by either the boot sock or drag swab method. The samples were cultured by selective enrichment in tetrathionate broth followed by transfer onto a modified semisolid Rappaport-Vassiliadis medium and then plating onto brilliant green with novobiocin and xylose lysine brilliant Tergitol 4 plates. One-milliliter aliquots of the selective enrichment broths from each sample were collected for DNA extraction by the commercial PrepSEQ nucleic acid extraction assay and analysis by the Salmonella Enteritidis–specific real-time PCR assay. The real-time PCR assay detected no significant differences between the boot sock and drag swab samples. In contrast, the culture method detected a significantly higher number of positive samples from boot socks. The diagnostic sensitivity of the real-time PCR assay for the field samples was significantly higher than that of the culture method. The kappa value obtained was 0.46, indicating moderate agreement between the real-time PCR assay and the culture method. In addition, the real-time PCR method had a turnaround time of 2 days compared with 4 to 8 days for the culture method. The higher sensitivity as well as the reduction in time and labor makes this real-time PCR assay an excellent alternative to conventional culture methods for diagnostic purposes, surveillance, and research studies to improve food safety.


Sign in / Sign up

Export Citation Format

Share Document