scholarly journals EFFECT OF RE-VIBRATION TIME AND STEEL FIBER CONTENT ON THE PROPERTIES OF CRUSHED CEMENT-SAND MORTAR CONCRETE Dr.

2005 ◽  
Vol 13 (2) ◽  
pp. 1-12
Author(s):  
Payman Hassan ◽  
Ali R. Yousif ◽  
Dr. Omar Qarani Aziz
Structures ◽  
2022 ◽  
Vol 36 ◽  
pp. 565-579
Author(s):  
Comfort Mensah ◽  
Benzhi Min ◽  
Alex Osei Bonsu ◽  
Zhenqing Wang

2019 ◽  
Vol 168 ◽  
pp. 291-301 ◽  
Author(s):  
Shamsad Ahmad ◽  
Mehboob Rasul ◽  
Saheed Kolawole Adekunle ◽  
Salah U. Al-Dulaijan ◽  
Mohammed Maslehuddin ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1845 ◽  
Author(s):  
Chunling Zhong ◽  
Mo Liu ◽  
Yunlong Zhang ◽  
Jing Wang

This study investigated four factors (water/binder ratio, silica fume, fly ash, and sand/binder ratio) using the orthogonal experimental design method to prepare the mix proportions of a manufactured sand reactive powder concrete (RPC) matrix to determine the optimal matrix mix proportions. On this basis, we assessed the compressive and splitting tensile strengths of different steel fiber contents under natural, standard, and compound curing conditions to develop an economical and reasonable RPC for various engineering requirements. A calculation method for the RPC strength of the steel fiber contents was evaluated. The results showed that the optimum steel fiber content for manufactured sand RPC is 4% under natural, standard, and compound curing conditions. Compared with standard curing, compound curing can improve the early strength of manufactured sand RPC but only has a small effect on the enhancement of late strength. Although the strength of natural curing is slightly lower than that of standard curing, it basically meets project requirements and is beneficial for practical applications. The calculation formula of 28-day compressive and splitting tensile strengths of manufactured sand RPC steel fiber at 0%–4% is proposed to meet the different engineering requirements and the flexible selection of steel fiber content.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qiao-Huan Wang ◽  
Jiong-Feng Liang ◽  
Chun-Feng He ◽  
Wei Li

This paper attempts to explore the effects of recycled coarse aggregate content, steel fiber content, and concrete strength on the axial compressive behavior of steel fiber-reinforced recycled coarse aggregate (RCA) concrete-filled circular steel stub columns. A total of 14 short columns are tested. The results show that using RCA in concrete will reduce the bearing capacity of short columns, but the increase in steel fiber content and concrete strength can eliminate this shortcoming. Not only that, the concrete strength has a great influence on the ductility and stiffness of the specimen.


2014 ◽  
Vol 1055 ◽  
pp. 23-26
Author(s):  
Can Xu

In the original to remove steel and steel fiber reinforced concrete coarse aggregate in quartz powder and a small amount of activator, can boost steel fiber content, and its application in construction makes it more convenient, but how the penetration resistance works is not particularly clear. Through the penetration resistance experiment, found that when joined the SF and BF, RPC can still keep complete even after three times by penetration ,indicating the good performance of penetration resistance.


2021 ◽  
pp. 147592172110528
Author(s):  
Zahoor Hussain ◽  
Zhang Pu ◽  
Abasal Hussain ◽  
Shakeel Ahmed ◽  
Atta Ullah Shah ◽  
...  

Cracks in concrete structures have always been the main reason to allow the aggressive and harmful agents to infringe the concrete resulting in its deterioration and decreasing lifespan. In the present study, the water permeability of the cracked concrete has been investigated. The consequences of cracking on the durability and endurance of concrete were also studied. A state-of-the-art permeability setup was designed to measure the water flow in normal and fiber-reinforced concrete under direct tensile loading. The setup was convenient for determining the average stress applied to the concrete specimens and simultaneously the maximum crack opening. Furthermore, the effect of fiber content on the cracking geometry (tortuosity and roughness) was evaluated by incorporating the coordinate data of the cracked surface using a 3D sensor-based laser scanning data acquisition system. To understand the effect of fiber content on the cracking geometry (tortuosity and roughness), the acquired data were then analyzed. Test results show that the designed setup is suitable to measure the water permeability under direct tensile loading. Water permeability decreased upon increasing the steel fiber dosage. Besides, the results show that tortuosity decreased while surface roughness increased with the fiber dosage increment. Promising preliminary results indicated that there is an inverse relationship between surface roughness and water permeability. The crack sensing setup successfully monitored the crack.


Author(s):  
Josef Landler ◽  
Oliver Fischer

<p>To design flat slabs directly supported on columns, the punching shear resistance of the slab is a main factor. It can be increased in the vicinity of the slab-column connection with punching shear reinforcement, like bent up bars or shear studs, to bear the high reaction forces. However, the usage of punching shear reinforcement requires the knowledge of special design rules and often leads to problems and deficiencies in construction.</p><p>Fiber reinforced concrete seems to be a promising alternative to conventional punching shear reinforcement. To investigate the load bearing behavior of the slab-column connection using fiber reinforced concrete, a total of eight punching shear tests were performed. The specimens were realized with a typical top and bottom flexural reinforcement, but without punching shear reinforcement. Varied parameters were the slab thickness with 250 mm and 300 mm and the fiber content V<sub>f</sub> with 0.5 Vol.-% and 1.0 Vol.-%. To investigate the influence of modern fiber types, normal- and high-strength steel fibers with normal- and double-hooked-ends were used.</p><p>In all eight experimental tests, the intended punching shear failure was achieved. The capable load using fiber reinforced concrete increased by 20 % to 50 % compared to the reference tests without steel fibers, depending on the fiber type and the fiber content V<sub>f</sub>. Additionally, this load increase was accompanied by a significant improvement in ductility. The post-cracking behavior was noticeably influenced by the used steel fiber type. An influence of the slab thickness or steel fiber type on the shear strength contributed by the fiber reinforced concrete could not be determined.</p>


Sign in / Sign up

Export Citation Format

Share Document