scholarly journals Multiple Attribute Decision-Making Method Using Linguistic Cubic Hesitant Variables

Algorithms ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 135 ◽  
Author(s):  
Jun Ye ◽  
Wenhua Cui

Linguistic decision making (DM) is an important research topic in DM theory and methods since using linguistic terms for the assessment of the objective world is very fitting for human thinking and expressing habits. However, there is both uncertainty and hesitancy in linguistic arguments in human thinking and judgments of an evaluated object. Nonetheless, the hybrid information regarding both uncertain linguistic arguments and hesitant linguistic arguments cannot be expressed through the various existing linguistic concepts. To reasonably express it, this study presents a linguistic cubic hesitant variable (LCHV) based on the concepts of a linguistic cubic variable and a hesitant fuzzy set, its operational relations, and its linguistic score function for ranking LCHVs. Then, the objective extension method based on the least common multiple number/cardinality for LCHVs and the weighted aggregation operators of LCHVs are proposed to reasonably aggregate LCHV information because existing aggregation operators cannot aggregate LCHVs in which the number of their hesitant components may imply difference. Next, a multi-attribute decision-making (MADM) approach is proposed based on the weighted arithmetic averaging (WAA) and weighted geometric averaging (WGA) operators of LCHVs. Lastly, an illustrative example is provided to indicate the applicability of the proposed approaches.

2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Harish Garg ◽  
Rishu Arora

The objective of this paper is to present novel algorithms for solving the multiple attribute decision-making problems under the possibility intuitionistic fuzzy soft set (PIFSS) information. The prominent characteristics of the PIFSS are that it considers the membership and nonmembership degrees of each object during evaluation and their corresponding possibility degree. Keeping these features, this paper presents some new operation laws, score function, and comparison laws between the pairs of the PIFSSs. Further, we define COmplex PRoportional ASsessment (COPRAS) and weighted averaging and geometric aggregation operators to aggregate the PIFSS information into a single one. Later, we develop two algorithms based on COPRAS and aggregation operators to solve decision-making problems. In these approaches, the experts and the weights of the parameters are determined with the help of entropy and the distance measure to remove the ambiguity in the information. Finally, a numerical example is given to demonstrate the presented approaches.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1322
Author(s):  
Yaqing Kou ◽  
Xue Feng ◽  
Jun Wang

In this paper, a new multiple attribute decision-making (MADM) method under q-rung dual hesitant fuzzy environment from the perspective of aggregation operators is proposed. First, some aggregation operators are proposed for fusing q-rung dual hesitant fuzzy sets (q-RDHFSs). Afterwards, we present properties and some desirable special cases of the new operators. Second, a new entropy measure for q-RDHFSs is developed, which defines a method to calculate the weight information of aggregated q-rung dual hesitant fuzzy elements. Third, a novel MADM method is introduced to deal with decision-making problems under q-RDHFSs environment, wherein weight information is completely unknown. Finally, we present numerical example to show the effectiveness and performance of the new method. Additionally, comparative analysis is conducted to prove the superiorities of our new MADM method. This study mainly contributes to a novel method, which can help decision makes select optimal alternatives when dealing with practical MADM problems.


2019 ◽  
Vol 12 (05) ◽  
pp. 1950055 ◽  
Author(s):  
Fazli Amin ◽  
Aliya Fahmi

In this paper, we define the basic concept of triangular neutrosophic cubic hesitant fuzzy number and their properties. We develop a triangular neutrosophic cubic hesitant fuzzy ordered weighted arithmetic averaging (TNCHFOWAA) operator and a triangular neutrosophic cubic hesitant fuzzy ordered weighted geometric averaging (TNCHFOWGA) operator to aggregate triangular neutrosophic cubic hesitant fuzzy number (TNCHFN) information and investigate their properties. Furthermore, a multiple attribute decision-making method based on the TNCHFOWAA operator and triangular neutrosophic cubic hesitant fuzzy ordered weighted geometric (TNCHFOWG) operator and the score function of TNCHFN is established under a TNCHFN environment. Finally, an illustrative example of investment alternatives is given to demonstrate the application and effectiveness of the developed approach.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 269 ◽  
Author(s):  
Huiling Xue ◽  
Xiaotong Yang ◽  
Chunfang Chen

The neutrosophic cubic sets are an extension of the cubic sets to the neutrosophic sets. It contains three variables, which respectively represent the membership degree, non-membership degree and uncertainty of the element to the set. The score function is an important indicator in the multi-attribute decision-making problem. In this paper, we consider the possibility that an element belongs to a set and put forward the concept of possibility neutrosophic cubic sets. On this basis, we introduce some related concepts and give the binary operation of possibility neutrosophic cubic sets and use specific examples to supplement the corresponding definition. Meanwhile, a decision-making method based on the score function of possibility neutrosophic cubic sets is proposed and a numerical example is given to illustrate the effectiveness of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-25 ◽  
Author(s):  
Bing Han ◽  
Huayou Chen ◽  
Jiaming Zhu ◽  
Jinpei Liu

This paper proposes an approach to linguistic multiple attribute decision-making problems with interactive unbalanced linguistic assessment information by unbalanced linguistic generalized Heronian mean aggregation operators. First, some generalized Heronian mean aggregation operators with unbalanced linguistic information are proposed, involving the unbalanced linguistic generalized arithmetic Heronian mean operator and the unbalanced linguistic generalized geometric Heronian mean operator. For the situation that the input arguments have different degrees of importance, the unbalanced linguistic generalized weighted arithmetic Heronian mean operator and the unbalanced linguistic generalized weighted geometric Heronian mean operator are developed. Then we investigate their properties and some particular cases. Finally, the effectiveness and universality of the developed approach are illustrated by a low-carbon tourist instance and comparison analysis. A sensitivity analysis is performed as well to test the robustness of proposed methods.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 23
Author(s):  
Tahir Mahmood ◽  
Ubaid ur Rehman ◽  
Jabbar Ahmmad ◽  
Gustavo Santos-García

On the basis of Hamacher operations, in this manuscript, we interpret bipolar complex fuzzy Hamacher weighted average (BCFHWA) operator, bipolar complex fuzzy Hamacher ordered weighted average (BCFHOWA) operator, bipolar complex fuzzy Hamacher hybrid average (BCFHHA) operator, bipolar complex fuzzy Hamacher weighted geometric (BCFHWG) operator, bipolar complex fuzzy Hamacher ordered weighted geometric (BCFHOWG) operator, and bipolar complex fuzzy Hamacher hybrid geometric (BCFHHG) operator. We present the features and particular cases of the above-mentioned operators. Subsequently, we use these operators for methods that can resolve bipolar complex fuzzy multiple attribute decision making (MADM) issues. We provide a numerical example to authenticate the interpreted methods. In the end, we compare our approach with existing methods in order to show its effectiveness and practicality.


Algorithms ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 154
Author(s):  
Stylianos Giakoumakis ◽  
Basil Papadopoulos

In this paper, we develop a novel computation model of Intuitionistic Fuzzy Values with the usage of fuzzy negations and Archimedean copulas. This novel computation model’s structure is based on the extension of the existing operations of intuitionistic fuzzy values with some classes of fuzzy negations. Many properties of the proposed operations are investigated and proved. Additionally, in this paper we introduce the concepts of intuitionistic fuzzy Archimedean copula weighted arithmetic and geometric aggregation operators based on fuzzy negations, including a further analysis of their properties. Finally, using a case study from an already published paper we found that our method has many advantages.


2021 ◽  
pp. 1-14
Author(s):  
Huijuan Guo ◽  
Ruipu Yao

The symmetry between fuzzy evaluations and crisp numbers provides an effective solution to multiple attribute decision making (MADM) problems under fuzzy environments. Considering the effect of information distribution on decision making, a novel approach to MADM problems under the interval-valued q-rung orthopair fuzzy (Iq-ROF) environments is put forward. Firstly, the clustering method of interval-valued q-rung orthopair fuzzy numbers (Iq-ROFNs) is defined. Secondly, Iq-ROF density weighted arithmetic (Iq-ROFDWA) intermediate operator and Iq-ROF density weighted geometric average (Iq-ROFDWGA) intermediate operator are developed based on the density weighted intermediate operators for crisp numbers. Thirdly, combining the density weighted intermediate operators with the Iq-ROF weighted aggregation operators, Iq-ROF density aggregation operators including Iq-ROF density weighted arithmetic (Iq-ROFDWAA) aggregation operator and Iq-ROF density weighted geometric (Iq-ROFDWGG) aggregation operator are proposed. Finally, effectiveness of the proposed method is verified through a numerical example.


Author(s):  
Peide Liu ◽  
Peng Wang

Linguistic intuitionistic fuzzy numbers (LIFNs) is a new concept in describing the intuitionistic fuzzy information, which membership and non-membership are expressed by linguistic terms, so it can more easily express the fuzzy information, and some research results on LIFNs have been achieved. However, in the existing researches, some linguistic intuitionistic fuzzy aggregation operators are based on the traditional operational rules, and they have some drawbacks for multi-attribute decision making (MADM) in the practical application. In order to overcome these problems, in this paper, we proposed some improved operational rules based on LIFNs and verified their some properties. Then we developed some aggregation operators to fuse the decision information represented by LIFNs, including the improved linguistic intuitionistic fuzzy weighted averaging (ILIFWA) operator and the improved linguistic intuitionistic fuzzy weighted power average (ILIFWPA) operator. Further, we proved their some desirable properties. Based on the ILIFWA operator and the ILIFWPA operator, we presented some new methods to deal with the multi-attribute group decision making (MAGDM) problems under the linguistic intuitionistic fuzzy environment. Finally, we used some practical examples to illustrate the validity and feasibility of the proposed methods by comparing with other methods.


2014 ◽  
Vol 15 (2) ◽  
pp. 277-298 ◽  
Author(s):  
Guiwu Wei ◽  
Rui Lin ◽  
Xiaofei Zhao ◽  
Hongjun Wang

In this paper, we investigate the multiple attribute decision making problems with fuzzy number intuitionistic fuzzy information. Firstly, some operational laws of fuzzy number intuitionistic fuzzy values, score function and accuracy function of fuzzy number intuitionistic fuzzy values are introduced. Then, we have developed two fuzzy number intuitionistic fuzzy Choquet integral aggregation operators: induced fuzzy number intuitionistic fuzzy choquet ordered averaging (IFNIFCOA) operator and induced fuzzy number intuitionistic fuzzy choquet ordered geometric (IFNIFCOG) operator. The prominent characteristic of the operators is that they can not only consider the importance of the elements or their ordered positions, but also reflect the correlation among the elements or their ordered positions. We have studied some desirable properties of the IFNIFCOA and IFNIFCOG operators, such as commutativity, idempotency and monotonicity, and applied the IFNIFCOA and IFNIFCOGM operators to multiple attribute decision making with fuzzy number intuitionistic fuzzy information. Finally an illustrative example has been given to show the developed method.


Sign in / Sign up

Export Citation Format

Share Document