scholarly journals Design and Characterization of an Electrostatic Constant-Force Actuator Based on a Non-Linear Spring System

Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 192
Author(s):  
Anna Christina Thewes ◽  
Philip Schmitt ◽  
Philipp Löhler ◽  
Martin Hoffmann

In recent years, tissue engineering with mechanical stimulation has received considerable attention. In order to manipulate tissue samples, there is a need for electromechanical devices, such as constant-force actuators, with integrated deflection measurement. In this paper, we present an electrostatic constant-force actuator allowing the generation of a constant force and a simultaneous displacement measurement intended for tissue characterization. The system combines a comb drive structure and a constant-force spring system. A theoretical overview of both subsystems, as well as actual measurements of a demonstrator system, are provided. Based on the silicon-on-insulator technology, the fabrication process of a moveable system with an extending measurement tip is shown. Additionally, we compare measurement results with simulations. Our demonstrator reaches a constant-force of 79 ± 2 μN at an operating voltage of 25 V over a displacement range of approximately 40 μm, and the possibility of adjusting the constant-force by changing the voltage is demonstrated.

2001 ◽  
Vol 66 (9) ◽  
pp. 1315-1340 ◽  
Author(s):  
Vladimir J. Balcar ◽  
Akiko Takamoto ◽  
Yukio Yoneda

The review highlights the landmark studies leading from the discovery and initial characterization of the Na+-dependent "high affinity" uptake in the mammalian brain to the cloning of individual transporters and the subsequent expansion of the field into the realm of molecular biology. When the data and hypotheses from 1970's are confronted with the recent developments in the field, we can conclude that the suggestions made nearly thirty years ago were essentially correct: the uptake, mediated by an active transport into neurons and glial cells, serves to control the extracellular concentrations of L-glutamate and prevents the neurotoxicity. The modern techniques of molecular biology may have provided additional data on the nature and location of the transporters but the classical neurochemical approach, using structural analogues of glutamate designed as specific inhibitors or substrates for glutamate transport, has been crucial for the investigations of particular roles that glutamate transport might play in health and disease. Analysis of recent structure/activity data presented in this review has yielded a novel insight into the pharmacological characteristics of L-glutamate transport, suggesting existence of additional heterogeneity in the system, beyond that so far discovered by molecular genetics. More compounds that specifically interact with individual glutamate transporters are urgently needed for more detailed investigations of neurochemical characteristics of glutamatergic transport and its integration into the glutamatergic synapses in the central nervous system. A review with 162 references.


2021 ◽  
pp. 107754632110004
Author(s):  
Sanjukta Chakraborty ◽  
Aparna (Dey) Ghosh ◽  
Samit Ray-Chaudhuri

This article presents the design of a tuned mass damper with a conical spring to enable tuning to the natural frequency of the system at multiple values, as may be convenient in case of a system with fluctuations in the mass. The principle and design procedure of the conical spring in the context of a varying mass system are presented. A passive feedback control mechanism based on a simple pulley-mass system is devised to cater to the multi-tuning requirements. A design example of an elevated water tank with fluctuating water content, subjected to ground excitation, is considered to numerically illustrate the efficiency of such a tuned mass damper associated with the conical spring. The conical spring is designed based on the tuning requirements at different mass conditions of the elevated water tank by satisfying the allowable load bearing capacity of the spring. Comparisons are made with the conventional passive tuned mass damper with a linear spring tuned to the full tank condition. Results from time history analysis reveal that the conical spring-tuned mass damper can be successfully designed to remain tuned and thereby achieve significant response reductions under stiffening conditions of the primary structure, whereas the linear spring-tuned mass damper suffers performance degradation because of detuning, whenever there is any fluctuation in the system mass.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 390
Author(s):  
Camilo G. Sotomayor ◽  
Stan Benjamens ◽  
Hildebrand Dijkstra ◽  
Derya Yakar ◽  
Cyril Moers ◽  
...  

Ultrasound examination is advised for early post-kidney transplant assessment. Grayscale median (GSM) quantification is novel in the kidney transplant field, with no systematic assessment previously reported. In this prospective cohort study, we measured the post-operative GSM in a large cohort of adult kidney transplant recipients (KTR) who consecutively underwent Doppler ultrasound directly after transplantation (within 24 h), compared it with GSM in nontransplanted patients, and investigated its association with baseline and follow-up characteristics. B-mode images were used to calculate the GSM in KTR and compared with GSM data in nontransplanted patients, as simulated from summary statistics of the literature using a Mersenne twister algorithm. The association of GSM with baseline and 1-year follow-up characteristics were studied by means of linear regression analyses. In 282 KTR (54 ± 15 years old, 60% male), the median (IQR) GSM was 55 (45–69), ranging from 22 to 124 (coefficient of variation = 7.4%), without differences by type of donation (p = 0.28). GSM in KTR was significantly higher than in nontransplanted patients (p < 0.001), and associated with systolic blood pressure, history of cardiovascular disease, and donor age (std. β = 0.12, −0.20, and 0.13, respectively; p < 0.05 for all). Higher early post-kidney transplant GSM was not associated with 1-year post-kidney transplant function parameters (e.g., measured and estimated glomerular filtration rate). The data provided in this study could be used as first step for further research on the application of early postoperative ultrasound in KTR.


1994 ◽  
Vol 116 (3) ◽  
pp. 937-943 ◽  
Author(s):  
J. G. Jenuwine ◽  
A. Midha

A means of synthesis of single-input and multiple-output port mechanisms for specified energy absorption is formulated for multiple precision points. The synthesis presented makes use of an extension of the loop closure method which includes expressions for energy absorption by linear spring elements. The configuration considered locates spring elements at two output ports of a multi-loop, planar mechanism. Economies realized for the symmetric mechanism are discussed for both one- and two-plane symmetry. Synthesis examples are included for both the general and symmetric mechanism. Special applications presented include synthesis of a constant force mechanism and synthesis of a mechanism suited to the energy absorption requirements of an automotive crashworthiness system.


Angiology ◽  
2006 ◽  
Vol 57 (2) ◽  
pp. 155-160 ◽  
Author(s):  
Kenichi Sakakura ◽  
Takanori Yasu ◽  
Yasuyuki Kobayashi ◽  
Takuji Katayama ◽  
Yoshitaka Sugawara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document