scholarly journals Design and Analysis of an Active Disturbance Rejection Robust Adaptive Control System for Electromechanical Actuator

Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 307
Author(s):  
Qinan Chen ◽  
Hui Chen ◽  
Deming Zhu ◽  
Linjie Li

Airline electromechanical actuators (EMAs), on the task of controlling flight surfaces, hold a great promise with the development of more- and all-electric aircraft. Notwithstanding, the deficiencies in both robustness and adaptability of control algorithms prevent EMAs from extensive use. However, the state-of-the-art control schemes fail to precisely compensate the system nonlinear uncertainties of servo control. In this paper, from the innovation point of view, we tend to put forward the foundation of devising an active disturbance rejection robust adaptive control (ADRRAC) strategy, whose main purpose is to deal with the position servo control of EMA. Specifically, an adaptive control law is designed and deployed for resolving not only the nonlinear disturbance, but also the parameter uncertainties. In addition, an extended disturbance estimator is employed to estimate the external disturbance and thus eliminate its impact. The proposed controlling algorithm is deemed best able to address the external disturbance based on the nonlinear uncertainty compensation. With the input parameters and control commands, the ADRRAC strategy maintains servo system stability while approaching the controlling target. Following the algorithm description, a proof of the controlling stability of ADRRAC strategy is presented in detail as well. Experiments on a variety of tracking tasks are conducted on a prototype of an EMA to investigate the working performance of the proposed control strategy. The experimental outcomes are reported, which verify the effectiveness of the ADRRAC strategy, compared to widely applied control strategies. According to the data analysis results, our controller is capable of obtaining an even faster system response, a higher tracking accuracy and a more stable system state.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Xin Ning ◽  
Yao Zhang ◽  
Zheng Wang

In the complex environment, the suddenly changing structural parameters and abrupt actuator failures are often encountered, and the negligence or unproper handling method may induce undesired or unacceptable results. In this paper, taking the suddenly changing structural parameters and abrupt actuator failures into consideration, we focus on the robust adaptive control design for a class of heterogeneous Takagi–Sugeno (T-S) fuzzy nonlinear systems subjected to discontinuous multiple uncertainties. The key point is that the switch modes not only vary with the system time but also vary with the system states, and the intrinsic heterogeneous characteristics make it difficult to design stable controllers. Firstly, the concepts of differential inclusion are introduced to describe the heterogeneous fuzzy systems. Meanwhile, a fundamental lemma is provided to demonstrate the criteria of the boundness for a Filippov solution. Then, by using the set-valued Lie derivative of the Lyapunov function and introducing a vector of specific continuous functions, the closed-loop T-S fuzzy differential inclusion systems are proved to be ultimately bounded. The sufficient conditions for system stability are derived in term of linear matrix inequalities (LMIs), which can be solved directly. Finally, a numerical example is provided to illustrate the effectiveness of the proposed control algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Shurong Li ◽  
Zhulong Shao ◽  
Pandeng Xu ◽  
Huaiqiang Yin

This paper focuses on the position/force tracking control problem for constrained multiple flexible joint manipulators system with nonlinear input of hysteresis loop. Firstly, the dynamic model is given in the task space and the input of hysteresis loop model is approximated by a differential equation. Secondly, considering the disturbance with unknown bounds, a robust adaptive control strategy based on the sliding mode which consists of constraint force error and position error is designed. The proposed approach can not only compensate the model error, external disturbance, and flexible parameter uncertainties, but also drive the closed-loop system variables to reach the sliding model surface. Then it can be proved that both position and constraint force errors can be guaranteed to converge to zero. Finally, the simulation results can verify the effectiveness of the proposed method.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nigar Ahmed ◽  
Abid Raza ◽  
Rameez Khan

Purpose The aim of this paper is to design a nonlinear disturbance observer-based control (DOBC) method obtained by patching a control method developed using a robust adaptive technique and a DO. Design/methodology/approach For designing a DOBC, initially a class of nonlinear system is considered with an external disturbance. First, a DO is designed to estimate the external disturbances. This estimate is combined with the controller to reject the disturbances and obtain the desired control objective. For designing a controller, the robust sliding mode control theory is used. Furthermore, instead of using a constant switching gain, an adaptive gain tuning criterion is designed using Lyapunov candidate function. To investigate the stability and effectiveness of the developed DOBC, stability analysis and simulation study are presented. Findings The major findings of this paper include the criteria of designing the robust adaptive control parameters and investigating the disturbance rejection when robust adaptive control based DOBC is developed. Practical implications In practice, the flight of quadrotor is affected by different kind of external disturbances, thus leading to the change in dynamics. Hence, it is necessary to design DOBCs based on robust adaptive controllers such that the quadrotor model adapts to the change in dynamics, as well as nullify the effect of disturbances. Originality/value Designing DOBCs based on robust control method is a common practice; however, the robust adaptive control method is rarely developed. This paper contributes in the domain of DOBC based on robust adaptive control methods such that the behavior of controller varies with the change in dynamics occurring due to external disturbances.


2011 ◽  
Vol 295-297 ◽  
pp. 270-273
Author(s):  
Jian Ping Cai ◽  
Jun Er Ma

In this note, a class of gun control system of tank is considered with all uncertainties, such as unknown constant parameters, unlinearly parts, unparameterized parts, unmodeled parts, unknown external disturbance and so on. An robust adaptive control law is designed with backstepping technique. Compared to exist results on tank gun control problem , our control scheme combine the robust control and the adaptive estimator of unknown constant parameters and can compensate all uncertainties Accurately. The stability of closed loop system and the tracking performance can be guaranteed by this control law. Simulation studies show that this controller is effective.


Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 20
Author(s):  
Manh Hung Nguyen ◽  
Hoang Vu Dao ◽  
Kyoung Kwan Ahn

In this paper, an active disturbance rejection control is designed to improve the position tracking performance of an electro-hydraulic actuation system in the presence of parametric uncertainties, non-parametric uncertainties, and external disturbances as well. The disturbance observers (Dos) are proposed to estimate not only the matched lumped uncertainties but also mismatched disturbance. Without the velocity measurement, the unmeasurable angular velocity is robustly calculated based on the high-order Levant’s exact differentiator. These disturbances and angular velocity are integrated into the control design system based on the backstepping framework which guarantees high-accuracy tracking performance. The system stability analysis is analyzed by using the Lyapunov theory. Simulations based on an electro-hydraulic rotary actuator are conducted to verify the effectiveness of the proposed control method.


Sign in / Sign up

Export Citation Format

Share Document