scholarly journals Real-Time Numerical Simulation for Accurate Soft Tissues Modeling during Haptic Interaction

Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 17
Author(s):  
Paolo Tripicchio ◽  
Salvatore D’Avella ◽  
Emanuele Ruffaldi

The simulation of fabrics physics and its interaction with the human body has been largely studied in recent years to provide realistic-looking garments and wears specifically in the entertainment business. When the purpose of the simulation is to obtain scientific measures and detailed mechanical properties of the interaction, the underlying physical models should be enhanced to obtain better simulation accuracy increasing the modeling complexity and relaxing the simulation timing constraints to properly solve the set of equations under analysis. However, in the specific field of haptic interaction, the desiderata are to have both physical consistency and high frame rate to display stable and coherent stimuli as feedback to the user requiring a tradeoff between accuracy and real-time interaction. This work introduces a haptic system for the evaluation of the fabric hand of specific garments either existing or yet to be produced in a virtual reality simulation. The modeling is based on the co-rotational Finite Element approach that allows for large displacements but the small deformation of the elements. The proposed system can be beneficial for the fabrics industry both in the design phase or in the presentation phase, where a virtual fabric portfolio can be shown to customers around the world. Results exhibit the feasibility of high-frequency real-time simulation for haptic interaction with virtual garments employing realistic mechanical properties of the fabric materials.

Author(s):  
Yi-Je Lim ◽  
Dhannanjay Deo ◽  
Suvranu De

Development of a realistic surgery simulator that delivers high fidelity visual and haptic (force) feedback, based on the physical models of soft tissues, requires the use of empirical data on the mechanical behavior of intra-abdominal organs under the action of external forces. Measurement of mechanical properties of soft tissues on live human patients presents significant risks, making the use of cadavers a logical alternative. In this paper we present techniques of measuring and modeling the mechanical response of human cadaveric tissue for the purpose of developing a “virtual cadaver” model. The major contribution of this paper is the development of physics-based models of soft tissues that range from linear elastic models to nonlinear viscoelastic models which are efficient for application within the framework of a real time surgery simulator.


Kidney360 ◽  
2021 ◽  
pp. 10.34067/KID.0002942021
Author(s):  
Matthew W. Urban ◽  
Andrew D. Rule ◽  
Thomas D. Atwell ◽  
Shigao Chen

Ultrasound is a key imaging tool for the evaluation of the kidney. Over the last two decades, methods to measure the mechanical properties of soft tissues have been developed and used in clinical practice, though the use in the kidney has not been as widespread as for other applications. The mechanical properties of the kidney are determined by the structure and composition of the renal parenchyma as well as the perfusion characteristics. As pathological processes change these factors, the mechanical properties change and can be used for diagnostic purposes as well as monitoring treatment or disease progression. Ultrasound-based elastography methods for evaluating the mechanical properties of the kidney use focused ultrasound beams to perturb the kidney and then high frame rate ultrasound methods are used to measure the resulting motion. The motion is analyzed to estimate the mechanical properties. This review will describe the principles of these methods and discuss several seminal studies related to characterizing the kidney. Additionally, an overview of the clinical use of elastography methods in native and kidney allografts will be provided. Perspectives on future developments and uses of elastography technology along with other complementary ultrasound imaging modalities will be provided.


Author(s):  
Parastoo Soleimani ◽  
David W. Capson ◽  
Kin Fun Li

AbstractThe first step in a scale invariant image matching system is scale space generation. Nonlinear scale space generation algorithms such as AKAZE, reduce noise and distortion in different scales while retaining the borders and key-points of the image. An FPGA-based hardware architecture for AKAZE nonlinear scale space generation is proposed to speed up this algorithm for real-time applications. The three contributions of this work are (1) mapping the two passes of the AKAZE algorithm onto a hardware architecture that realizes parallel processing of multiple sections, (2) multi-scale line buffers which can be used for different scales, and (3) a time-sharing mechanism in the memory management unit to process multiple sections of the image in parallel. We propose a time-sharing mechanism for memory management to prevent artifacts as a result of separating the process of image partitioning. We also use approximations in the algorithm to make hardware implementation more efficient while maintaining the repeatability of the detection. A frame rate of 304 frames per second for a $$1280 \times 768$$ 1280 × 768 image resolution is achieved which is favorably faster in comparison with other work.


2021 ◽  
Vol 11 (11) ◽  
pp. 5067
Author(s):  
Paulo Veloso Gomes ◽  
António Marques ◽  
João Donga ◽  
Catarina Sá ◽  
António Correia ◽  
...  

The interactivity of an immersive environment comes up from the relationship that is established between the user and the system. This relationship results in a set of data exchanges between human and technological actors. The real-time biofeedback devices allow to collect in real time the biodata generated by the user during the exhibition. The analysis, processing and conversion of these biodata into multimodal data allows to relate the stimuli with the emotions they trigger. This work describes an adaptive model for biofeedback data flows management used in the design of interactive immersive systems. The use of an affective algorithm allows to identify the types of emotions felt by the user and the respective intensities. The mapping between stimuli and emotions creates a set of biodata that can be used as elements of interaction that will readjust the stimuli generated by the system. The real-time interaction generated by the evolution of the user’s emotional state and the stimuli generated by the system allows him to adapt attitudes and behaviors to the situations he faces.


SIMULATION ◽  
2021 ◽  
pp. 003754972110216
Author(s):  
Zhang Lei ◽  
Li Jie ◽  
Wang Menglu ◽  
Liu Mengya

Simulating a physical system in real-time is widely used in equipment design, test, and validation. Though an implicit multistep numerical method excels at solving physical models that are usually composed of stiff ordinary differential equations, it is not suitable for real-time simulation because of state discontinuity and massive iterations for root finding. Thus, a method based on the backward differential formula is presented. It divides the main fixed step of real-time simulation into limited minor steps according to computing cost and accuracy demand. By analyzing and testing its capability, this method shows advantage and efficiency in real-time simulation, especially when the system contains stiff equations. A simulation application will have more flexibility while using this method.


Sign in / Sign up

Export Citation Format

Share Document