scholarly journals Novel Uses of Ultrasound to Assess Kidney Mechanical Properties

Kidney360 ◽  
2021 ◽  
pp. 10.34067/KID.0002942021
Author(s):  
Matthew W. Urban ◽  
Andrew D. Rule ◽  
Thomas D. Atwell ◽  
Shigao Chen

Ultrasound is a key imaging tool for the evaluation of the kidney. Over the last two decades, methods to measure the mechanical properties of soft tissues have been developed and used in clinical practice, though the use in the kidney has not been as widespread as for other applications. The mechanical properties of the kidney are determined by the structure and composition of the renal parenchyma as well as the perfusion characteristics. As pathological processes change these factors, the mechanical properties change and can be used for diagnostic purposes as well as monitoring treatment or disease progression. Ultrasound-based elastography methods for evaluating the mechanical properties of the kidney use focused ultrasound beams to perturb the kidney and then high frame rate ultrasound methods are used to measure the resulting motion. The motion is analyzed to estimate the mechanical properties. This review will describe the principles of these methods and discuss several seminal studies related to characterizing the kidney. Additionally, an overview of the clinical use of elastography methods in native and kidney allografts will be provided. Perspectives on future developments and uses of elastography technology along with other complementary ultrasound imaging modalities will be provided.

2013 ◽  
Vol 2 (1) ◽  
pp. 76-85
Author(s):  
Md Masudur Rahman ◽  
Mahzabeen Islam ◽  
Mahbuba Nargis ◽  
Samar Chandra Sarker ◽  
Mahmud Javed Hasan ◽  
...  

Ultrasound elastography (EUS) is a method to assess the mechanical properties of tissue, by applying stress and detecting tissue displacement using ultrasound. There are several EUS techniques used in clinical practice; strain (compression) EUS is the most common technique that allows real-time visualisation of the elastographic map on the screen. There is increasing evidence that EUS can be used to measure the mechanical properties of musculoskeletal tissue in clinical practice, with the future potential for early diagnosis to both guide and monitor therapy. This review describes the various EUS techniques available for clinical use, presents the published evidence on musculoskeletal applications of EUS and discusses the technical issues, limitations and future perspectives of this method in the assessment of the musculoskeletal system. Ultrasound elastography (EUS) is a recently developed ultrasound-based method, which allows the qualitative visual or quantitative measurements of the mechanical properties of tissue 1. The technique was first introduced in vitro in the early 1990s, and subsequently evolved into a real-time tool for in vivo imaging of the distribution of tissue strain and elastic modulus 2. EUS provides information on tissue stiffness, which complements and is independent from the acoustic impedance and vascular flow information provided by B-mode and Doppler imaging, thus opening a new dimension in diagnostic imaging 3 . EUS is based upon the general principle that stress applied to tissue causes changes within it, which depend on the elastic properties of tissue 3. Over the years of research on elasticity, there have been several approaches of EUS, resulting in different methods, depending on the way of tissue stress application and the used method to detect and construct an image of tissue displacement 3. Strain (compression) EUS is the commonest technique that allows real-time visualisation of the image on the screen, and it has been successfully employed to detect and characterise lesions in a variety of tissues and organs 5 . Disease in the musculoskeletal system results in alterations to its biomechanical properties. Although EUS techniques have been extensively employed for in vitro research of muscle and tendon biomechanics since the early 1990s 6 , the recent introduction of EUS into commercially available ultrasound systems has driven research activity towards potential clinical applications of this novel method in the musculoskeletal system 7.  This review aims to describe the various EUS techniques available for clinical use, present the available published evidence on musculoskeletal applications of EUS, and finally discuss the limitations and future perspectives of this technique for assessing the musculoskeletal system. DOI: http://dx.doi.org/10.3329/cbmj.v2i1.14191 Community Based Medical Journal Vol.2(1) 2013 76-85


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 17
Author(s):  
Paolo Tripicchio ◽  
Salvatore D’Avella ◽  
Emanuele Ruffaldi

The simulation of fabrics physics and its interaction with the human body has been largely studied in recent years to provide realistic-looking garments and wears specifically in the entertainment business. When the purpose of the simulation is to obtain scientific measures and detailed mechanical properties of the interaction, the underlying physical models should be enhanced to obtain better simulation accuracy increasing the modeling complexity and relaxing the simulation timing constraints to properly solve the set of equations under analysis. However, in the specific field of haptic interaction, the desiderata are to have both physical consistency and high frame rate to display stable and coherent stimuli as feedback to the user requiring a tradeoff between accuracy and real-time interaction. This work introduces a haptic system for the evaluation of the fabric hand of specific garments either existing or yet to be produced in a virtual reality simulation. The modeling is based on the co-rotational Finite Element approach that allows for large displacements but the small deformation of the elements. The proposed system can be beneficial for the fabrics industry both in the design phase or in the presentation phase, where a virtual fabric portfolio can be shown to customers around the world. Results exhibit the feasibility of high-frequency real-time simulation for haptic interaction with virtual garments employing realistic mechanical properties of the fabric materials.


2020 ◽  
Vol 54 (4) ◽  
pp. 289-296
Author(s):  
Adeeba Ali ◽  
Anil K. Chandna ◽  
Anshul Munjal

Background: Concerns about the accuracy and reliability of soft tissue landmarks using two-dimensional (2D) and three-dimensional (3D) imaging. Objective: The aim of the systematic review is to estimate accuracy and reliability of soft tissue landmarks with 2D imaging and 3D imaging for orthodontic diagnosis planning and treatment planning purposes. Data Sources: Electronic database search was performed in MEDLINE via PubMed, Embase via embase.com, and the Cochrane library website. Selection Criteria: The data were extracted according to two protocols based on Centre for Evidence-Based Medicine (CEBM) critical appraisal tools. Next, levels of evidence were categorized into three groups: low, medium, and high. Data Synthesis: Fifty-five publications were found through database search strategies. A total of nine publications were included in this review. Conclusion According to the available literature, 3D imaging modalities were more accurate and reliable as compared to 2D modalities. Cone beam computed tomography (CBCT) was considered the most reliable imaging tool for soft tissues.


EP Europace ◽  
2016 ◽  
Vol 18 (suppl_1) ◽  
pp. i31-i31
Author(s):  
Elaine Wan ◽  
Alexander Costet ◽  
Ethan Bunting ◽  
Julien Grondin ◽  
Hasan Garan ◽  
...  

Author(s):  
Donna M. Ebenstein

Nanoindentation is becoming an increasingly popular tool in the biomaterials field due to its ability to measure local mechanical properties in small, irregularly-shaped or heterogeneous samples.1 Although this technique was readily adapted to the study of mineralized tissues, the application of nanoindentation to compliant, hydrated biomaterials such as soft tissues and hydrogels has led to many challenges.1 Three key concerns associated with nanoindentation of compliant, hydrated materials are inaccurate surface detection, errors due to adhesion forces, and fluid interactions with the tip.1–4


Sign in / Sign up

Export Citation Format

Share Document