scholarly journals On the Design of Aeroelastically Scaled Models of High Aspect-Ratio Wings

Aerospace ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 166
Author(s):  
Frederico Afonso ◽  
Mónica Coelho ◽  
José Vale ◽  
Fernando Lau ◽  
Afzal Suleman

Recently, innovative aircraft designs were proposed to improve aerodynamic performance. Examples include high aspect ratio wings to reduce the aerodynamic induced drag to achieve lower fuel consumption. Such solution when combined with a lightweight structure may lead to aeroelastic instabilities such as flutter at lower air speeds compared to more conventional wing designs. Therefore, in order to ensure safe flight operation, it is important to study the aeroelastic behavior of the wing throughout the flight envelope. This can be achieved by either experimental or computational work. Experimental wind tunnel and scaled flight test models need to exhibit similar aeroelastic behavior to the full scale air vehicle. In this paper, three different aeroelastic scaling strategies are formulated and applied to a flexible high aspect-ratio wing. These scaling strategies are first evaluated in terms of their ability to generate reduced models with the intended representations of the aerodynamic, structural and inertial characteristics. Next, they are assessed in terms of their potential in representing the unsteady non-linear aeroelastic behavior in three different flight conditions. The scaled models engineered by exactly scaling down the internal structure suitably represent the intended aeroelastic behavior and allow the performance assessment for the entire flight envelope. However, since both the flight and wind tunnel models are constrained by physical and budgetary limitations, custom built structural models are more likely to be selected. However, the latter ones are less promising to study the entire flight envelope.

2012 ◽  
Vol 189 ◽  
pp. 306-311 ◽  
Author(s):  
Qing Guo ◽  
Bi Feng Song

High altitude and long endurance (HALE) vehicle always adopt straight or swept configuration, which leads to the problem that the wings of UAV have high aspect ratio and are very flexible. This kind of flexible wing exhibits large deformation when aerodynamic forces are loaded on them and the structural nonlinearity should be considered. So the dynamic and flutter characteristics will be changed. In the engineering applications, the effects of structural geometric nonlinearities on the air vehicle design are the most concerns of aeroelasticity before a systematic flutter analysis for the air vehicle. because the solution for nonlinear flutter speed based on the CFD-CSD method is complex and time consuming. In this paper, we propose a simple and efficient approach that can analyze the effect of structural geometric nonlinearities on the flutter characteristics of high aspect ratio wing quickly. And a straight wing and a straight-swept wing are analyzed to verify the feasibility and efficiency of the proposed method. It is found that the effect of structural geometric nonlinearities has a strong effect on the flutter characteristic of the straight wing, but is weak on the straight-swept wing. And finally the impact of swept angle on the dynamic and flutter characteristics of straight-swept wing is also discussed.


2015 ◽  
Vol 798 ◽  
pp. 565-570
Author(s):  
Luciano Magno Fragola Barbosa ◽  
Ricardo Luiz Utsch de Freitas Pinto ◽  
Bernardo Oliveira Hargreaves

In this work improvements on the geometry of a high aspect ratio aircraft wing are studied, in order to reduce the wing in-flight deformation, without changing the drag of the aircraft and without increasing the structural weight. For this, from a reference rectangular wing, one new wing with elliptical planform has been defined; and comparative analyses of loads and structural deformation have been made for the wings considered: the original rectangular wing and the new corresponding elliptical wing. The aerodynamic analysis is based on the lifting line approach. A computer routine is made by the authors based on this approach, to obtain both induced drag values and the load distribution of the two wings, the original one and the corresponding elliptical. Based on the loads, spars for the two wings have been defined, and in order to evaluate the vertical displacements in flight, a finite element routine have been used. The main result of this study is the comparison of the deformation of wings considered, subjected to the same load factor, and for the same aircraft mass. The results obtained are encouraging for further developments using the present methodology.


Sign in / Sign up

Export Citation Format

Share Document