scholarly journals Sensitivity-Based Non-Linear Model Predictive Control for Aircraft Descent Operations Subject to Time Constraints

Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 377
Author(s):  
Ramon Dalmau ◽  
Xavier Prats ◽  
Brian Baxley

The ability to meet a controlled time of arrival while also flying a continuous descent operation will enable environmentally friendly and fuel efficient descent operations while simultaneously maintaining airport throughput. Previous work showed that model predictive control, a guidance strategy based on a reiterated update of the optimal trajectory during the descent, provides excellent environmental impact mitigation figures while meeting operational constraints in the presence of modeling errors. Despite that, the computational delay associated with the solution of the trajectory optimization problem could lead to performance degradation and stability issues. This paper proposes two guidance strategies based on the theory of neighboring extremals that alleviate this problem. Parametric sensitivities are obtained by linearization of the necessary conditions of optimality along the active optimal trajectory plan to rapidly update it for small perturbations, effectively converting the complex and time consuming non-linear programming problem into a manageable quadratic programming problem. Promising results, derived from more than 4000 simulations, show that the performance of this method is comparable to that of instantaneously recalculating the optimal trajectory at each time sample.

Author(s):  
Zhi Qi ◽  
Qianyue Luo ◽  
Hui Zhang

In this paper, we aim to design the trajectory tracking controller for variable curvature duty-cycled rotation flexible needles with a tube-based model predictive control approach. A non-linear model is adopted according to the kinematic characteristics of the flexible needle and a bicycle method. The modeling error is assumed to be an unknown but bounded disturbance. The non-linear model is transformed to a discrete time form for the benefit of predictive controller design. From the application perspective, the flexible needle system states and control inputs are bounded within a robust invariant set when subject to disturbance. Then, the tube-based model predictive control is designed for the system with bounded state vector and inputs. Finally, the simulation experiments are carried out with tube-based model predictive control and proportional integral derivative controller based on the particle swarm optimisation method. The simulation results show that the tube-based model predictive control method is more robust and it leads to much smaller tracking errors in different scenarios.


2019 ◽  
Vol 123 ◽  
pp. 184-195 ◽  
Author(s):  
S.O. Hauger ◽  
N. Enaasen Flø ◽  
H. Kvamsdal ◽  
F. Gjertsen ◽  
T. Mejdell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document