scholarly journals Multi-Feature Optimization Study of Soil Total Nitrogen Content Detection Based on Thermal Cracking and Artificial Olfactory System

Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 37
Author(s):  
He Liu ◽  
Qinghui Zhu ◽  
Xiaomeng Xia ◽  
Mingwei Li ◽  
Dongyan Huang

To improve the accuracy of detecting soil total nitrogen (STN) content by an artificial olfactory system, this paper proposes a multi-feature optimization method for soil total nitrogen content based on an artificial olfactory system. Ten different metal–oxide semiconductor gas sensors were selected to form a sensor array to collect soil gas and generate response curves. Additionally, six features such as the response area, maximum value, average differential coefficient, standard deviation value, average value, and 15th-second transient value of each sensor response curve were extracted to construct an artificial olfactory feature space (10×6). Moreover, the relationship between feature space and soil total nitrogen content was used to establish backpropagation neural network (BPNN), extreme learning machine (ELM), and partial least squares regression (PLSR) models were used, and the coefficient of determination (R2), root mean square error (RMSE), and the ratio of performance to deviation (RPD) were selected as prediction performance indicators. The Monte Carlo cross-validation (MCCV) and K-means improved leave-one-out cross-validation (K-means LOOCV) were adopted to identify and remove abnormal samples in the feature space and establish the BPNN model, respectively. There were significant improvements before and after comparing the two rejection methods, among which the MCCV rejection method was superior, where values for R2, RMSE, and RPD were 0.75671, 0.33517, and 1.7938, respectively. After removing the abnormal samples, the soil samples were then subjected to feature-optimized dimensionality reduction using principal component analysis (PCA) and genetic algorithm-based optimization backpropagation neural network (GA-BP). The test results showed that after feature optimization the model indicators performed better than those of the unoptimized model, and the PLSR model with GA-BP for feature optimization had the best prediction effect, with an R2 value of 0.93848, RPD value of 3.5666, and RMSE value of 0.16857 in the test set. R2 and RPD values improved by 14.01% and 50.60%, respectively, compared with those before optimization, and RMSE value decreased by 45.16%, which effectively improved the accuracy of the artificial olfactory system in detecting soil total nitrogen content and could achieve more accurate quantitative prediction of soil total nitrogen content.

2019 ◽  
Vol 51 (2) ◽  
pp. 288-296 ◽  
Author(s):  
Mohammadreza Mobasheri ◽  
Meisam Amani ◽  
Maryam Ranjbaran ◽  
Sahel Mahdavi ◽  
Hamid Reza Zabihi

2021 ◽  
Vol 213 ◽  
pp. 105109
Author(s):  
Yueting Wang ◽  
Minzan Li ◽  
Ronghua Ji ◽  
Minjuan Wang ◽  
Yao Zhang ◽  
...  

1992 ◽  
Vol 25 (4-5) ◽  
pp. 203-209 ◽  
Author(s):  
R. Kayser ◽  
G. Stobbe ◽  
M. Werner

At Wolfsburg for a load of 100,000 p.e., the step-feed activated sludge process for nitrogen removal is successfully in operation. Due to the high denitrification potential (BOD:TKN = 5:1) the effluent total nitrogen content can be kept below 10 mg l−1 N; furthermore by some enhanced biological phosphate removal about 80% phosphorus may be removed without any chemicals.


2020 ◽  
Vol 63 (5) ◽  
pp. 407-417
Author(s):  
Lim Wai Yin ◽  
Lim Phaik Eem ◽  
Affendi Yang Amri ◽  
Song Sze Looi ◽  
Acga Cheng

AbstractWith the potential adverse effects of climate change, it is essential to enhance the understanding of marine ecosystem dynamics, which can be driven by the co-evolutionary interaction between autotrophs and herbivores. This study looked into the autotroph-herbivore interactions in Malaysian waters, mainly to determine if autotroph nutritional quality significantly influences herbivore consumption rates. We documented the relative consumption rate of a generalist herbivore (Chanos chanos Forsskål) obtained from the Straits of Malacca through multiple feeding trials using 12 macroalgal species collected from different coastal areas of the Straits of Malacca, the Straits of Johor, and the South China Sea. The herbivore fed selectively on the tested macroalgal species, with the most and least consumed species having the lowest and highest total nitrogen content, respectively. Besides total nitrogen content, the least consumed species also had the highest total phenolic content. Interestingly, we observed that the herbivore generally preferred to consume filamentous macroalgae, especially those collected from the South China Sea. Overall, our findings demonstrated that the feeding behaviour of a generalist herbivore could be influenced by the nutritional quality of the autotrophs, which may depend directly or indirectly on other factors such as autotroph morphology and geography.


2014 ◽  
Vol 602-605 ◽  
pp. 2445-2448
Author(s):  
Fu Quan Jia ◽  
Zhu Jun Tian

NIPGA technology is used in order to detect the total nitrogen content in sewage quickly. D-D neutron generator is used as the neutron source and BGO detector is used to detect gamma rays of nitrogen. The simulated result of MCNP shows the nitrogen’s limit of detection is 0.2 mg/L and the total nitrogen in V-type water can be detected. So this method can be used to detect the total nitrogen content in sewage quickly.


Sign in / Sign up

Export Citation Format

Share Document