scholarly journals Identification of Cabbage Seedling Defects in a Fast Automatic Transplanter Based on the maxIOU Algorithm

Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 65
Author(s):  
Gan Zhang ◽  
Yongshuang Wen ◽  
Yuzhi Tan ◽  
Ting Yuan ◽  
Junxiong Zhang ◽  
...  

The automatic identification of seedling defects is an important technology of an intelligent automatic transplanting machine, which effectively improves the quality of the transplanting machine’s operation. The accurate segmentation of seedling substrate and seedling region is the key to the success of the seedling defect recognition algorithm. This paper proposes the maxIOU algorithm to calculate the image segmentation threshold: The image G channel and excess green color space were selected as the color space for the segmentation of the substrate region and seedling region by analyzing the color histogram. Several images were randomly selected from the dataset to generate a training set and were labeled manually as the ground truth. The training set images were segmented using a threshold of zero to 255, and the intersection over union (IOU) were calculated using the algorithm segmented result and the ground truth. The threshold corresponding to the average IOU maximum was used as the segmentation threshold. After image segmentation, three features (area of the substrate, area of the seedling, and filling ratio of the lower part of the substrate) were obtained by the algorithm, and the image was identified for whether there was an empty conveyor belt, seedling deficiency, multiple seedlings, skew, and damaged substrate. The algorithm was tested on the automatic transplanter test platform. The experiment results were as follows: Firstly, the image segmentation threshold was calculated by the maxIOU method. The color component interval corresponding to the segmented substrate region was [0, 24] in the G channel, and the color component interval corresponding to the segmented seedling region was [21, 255] in the excess green channel. The average IOU of the substrate area was 0.854, and the average IOU of the seedling area was 0.820 in the verification experiment. Secondly, a dataset including 431 normal seedling images and 69 defective seedling images (empty conveyor belt, seedling deficiency, multiple seedlings, skew, and damaged substrate) was identified for defects. The accuracy, precision, and recall were 97.6%, 97.4%, and 99.8%. The processing time was 71.4 ms. The conclusion of the experiment was as follows: the maxIOU algorithm had high accuracy in the segmentation of the substrate and seedling region. The defect identification algorithm had high accuracy for defect identification of cabbage seedlings, and the algorithm had good real-time performance, which can be applied to high speed field transplanters.

Author(s):  
Prachi Juneja

These days eye weaknesses are a typical issue in all age group individuals begins from a newborn child to mature age. The discovery and extraction of these infections is a troublesome and tedious assignment. Computerized retinal pictures are considered; the first important strategy is to separate vessel in fundus pictures. Thus, three methods are utilized regulated techniques; here, the training set applies to remove vessel data by the pre-trained algorithm. This strategy is physically dealt with using gold std; vessel extraction is done before pathology calculations are involved in unaided recognition and extraction programs. The preparation set and ground truth marking will not be straightforwardly appropriate to the analysis. Retinal vessels extraction is improving as a result of noninvasive imaging of the retinal pictures likewise the information got from the design of the vasculature, and this data is essential for the identification and analysis of a fundus picture retinal sicknesses and pathologies, which incorporates glaucoma, hypertension, Diabetics Retina chart, and Age-based Macula De-age. Quick division calculations can recognize these.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199332
Author(s):  
Xintao Ding ◽  
Boquan Li ◽  
Jinbao Wang

Indoor object detection is a very demanding and important task for robot applications. Object knowledge, such as two-dimensional (2D) shape and depth information, may be helpful for detection. In this article, we focus on region-based convolutional neural network (CNN) detector and propose a geometric property-based Faster R-CNN method (GP-Faster) for indoor object detection. GP-Faster incorporates geometric property in Faster R-CNN to improve the detection performance. In detail, we first use mesh grids that are the intersections of direct and inverse proportion functions to generate appropriate anchors for indoor objects. After the anchors are regressed to the regions of interest produced by a region proposal network (RPN-RoIs), we then use 2D geometric constraints to refine the RPN-RoIs, in which the 2D constraint of every classification is a convex hull region enclosing the width and height coordinates of the ground-truth boxes on the training set. Comparison experiments are implemented on two indoor datasets SUN2012 and NYUv2. Since the depth information is available in NYUv2, we involve depth constraints in GP-Faster and propose 3D geometric property-based Faster R-CNN (DGP-Faster) on NYUv2. The experimental results show that both GP-Faster and DGP-Faster increase the performance of the mean average precision.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Peter M. Maloca ◽  
Philipp L. Müller ◽  
Aaron Y. Lee ◽  
Adnan Tufail ◽  
Konstantinos Balaskas ◽  
...  

AbstractMachine learning has greatly facilitated the analysis of medical data, while the internal operations usually remain intransparent. To better comprehend these opaque procedures, a convolutional neural network for optical coherence tomography image segmentation was enhanced with a Traceable Relevance Explainability (T-REX) technique. The proposed application was based on three components: ground truth generation by multiple graders, calculation of Hamming distances among graders and the machine learning algorithm, as well as a smart data visualization (‘neural recording’). An overall average variability of 1.75% between the human graders and the algorithm was found, slightly minor to 2.02% among human graders. The ambiguity in ground truth had noteworthy impact on machine learning results, which could be visualized. The convolutional neural network balanced between graders and allowed for modifiable predictions dependent on the compartment. Using the proposed T-REX setup, machine learning processes could be rendered more transparent and understandable, possibly leading to optimized applications.


2018 ◽  
Vol 176 ◽  
pp. 36-47 ◽  
Author(s):  
Aqing Yang ◽  
Huasheng Huang ◽  
Chan Zheng ◽  
Xunmu Zhu ◽  
Xiaofan Yang ◽  
...  

2019 ◽  
Vol 7 (4) ◽  
pp. T911-T922
Author(s):  
Satyakee Sen ◽  
Sribharath Kainkaryam ◽  
Cen Ong ◽  
Arvind Sharma

Salt model building has long been considered a severe bottleneck for large-scale 3D seismic imaging projects. It is one of the most time-consuming, labor-intensive, and difficult-to-automate processes in the entire depth imaging workflow requiring significant intervention by domain experts to manually interpret the salt bodies on noisy, low-frequency, and low-resolution seismic images at each iteration of the salt model building process. The difficulty and need for automating this task is well-recognized by the imaging community and has propelled the use of deep-learning-based convolutional neural network (CNN) architectures to carry out this task. However, significant challenges remain for reliable production-scale deployment of CNN-based methods for salt model building. This is mainly due to the poor generalization capabilities of these networks. When used on new surveys, never seen by the CNN models during the training stage, the interpretation accuracy of these models drops significantly. To remediate this key problem, we have introduced a U-shaped encoder-decoder type CNN architecture trained using a specialized regularization strategy aimed at reducing the generalization error of the network. Our regularization scheme perturbs the ground truth labels in the training set. Two different perturbations are discussed: one that randomly changes the labels of the training set, flipping salt labels to sediments and vice versa and the second that smooths the labels. We have determined that such perturbations act as a strong regularizer preventing the network from making highly confident predictions on the training set and thus reducing overfitting. An ensemble strategy is also used for test time augmentation that is shown to further improve the accuracy. The robustness of our CNN models, in terms of reduced generalization error and improved interpretation accuracy is demonstrated with real data examples from the Gulf of Mexico.


Sign in / Sign up

Export Citation Format

Share Document