scholarly journals The Use of Appropriate Cultivar of Basil (Ocimum basilicum) Can Increase Water Use Efficiency under Water Stress

Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 70 ◽  
Author(s):  
Iakovos Kalamartzis ◽  
Christos Dordas ◽  
Pantazis Georgiou ◽  
George Menexes

Drought is one of the major yield constraints of crop productivity for many crops. In addition, nowadays, climate change creates new challenges for crop adaptation in stressful environments. The objective of the present study was to determine the effect of water stress on five cultivars of basil (Mrs Burns, Cinnamon, Sweet, Red Rubin, Thai) and whether water use efficiency (WUE) can be increased by using the appropriate cultivar. Water stress affected the fresh and dry weight and also the partitioning of dry matter to leaves, flowers, and stems. Also, there are cultivars, such as Mrs Burns and Sweet, which were not affected by the limited amount of water and continued to produce a high amount of dry matter and also showed high essential oil yield. Essential oil content was not affected by the irrigation; however, essential oil yield was affected by the irrigation, and the highest values were found at Mrs Burns. The water use efficiency was affected by the cultivar and irrigation level, and the highest was found at Mrs Burns. The results show that using appropriate cultivars basil can achieve higher WUE and allow saving water resources and utilizing fields in areas with limited water resources for irrigation.

HortScience ◽  
2014 ◽  
Vol 49 (10) ◽  
pp. 1284-1291 ◽  
Author(s):  
Chiara Cirillo ◽  
Youssef Rouphael ◽  
Rosanna Caputo ◽  
Giampaolo Raimondi ◽  
Stefania De Pascale

Bougainvillea is widely used as flowering shrub in gardening and landscaping in the Mediterranean region characterized by limited water supply. The evaluation of deficit irrigation as a possible technique to improve water productivity and selection of genotypes that can better withstand soil water deficits are essential for sustainable production. A greenhouse experiment was conducted to determine the effects of deficit irrigation on three potted Bougainvillea genotypes [B. glabra var. Sanderiana, B. ×buttiana ‘Rosenka’, B. ‘Lindleyana’ (=B. ‘Aurantiaca’)] grown in two shapes, globe and pyramid, on agronomical and physiological parameters. Irrigation treatments were based on the daily water use (100%, 50%, or 25%). The shoot, total dry biomass, leaf number, leaf area, and macronutrient [nitrogen (N), phosphorus (P), and potassium (K)] concentration decreased in response to an increase in water stress with the lowest values recorded in the severe deficit irrigation (SDI) treatment. At 160 days after transplanting (DAT), the percentage of total dry biomass reduction caused by irrigation level was lower in B. ×buttiana ‘Rosenka’ compared with B. glabra var. Sanderiana and B. ‘Lindleyana’ (=B. ‘Aurantiaca’). At 160 DAT, the flower index increased in response to an increase in water stress with the highest values recorded under both moderate deficit irrigation (MDI) and SDI for B. ×buttiana ‘Rosenka’. The biomass water use efficiency (WUE) increased under water stress conditions with the highest values recorded in B. glabra var. Sanderiana and B. ×buttiana ‘Rosenka’ grown under MDI (average 1.43 and 1.25 g·L−1, respectively) and especially with SDI (average 1.68 and 1.36 g·L−1, respectively). A number of tolerance mechanisms such as increase in stomatal resistance, decrease in leaf water potential, and decrease in leaf osmotic potential have been observed, especially under SDI. The MDI treatment can be used successfully in Bougainvillea to reduce water consumption while improving the overall quality and WUE, whereas the genotypes B. glabra var. Sanderiana and B. ×buttiana ‘Rosenka’ could be considered suitable for pot plant production.


2017 ◽  
Vol 1 ◽  
pp. 222 ◽  
Author(s):  
Dalel Chakri Telahigue ◽  
Laila Ben Yahia ◽  
Fateh Aljane ◽  
Khaled Belhouchett ◽  
Lamjed Toumi

Five quinoa cultivars introduced from Egypte DRC (Desert Research Center-Caire) were tested in an experimental station in Tunisia located under arid climatic conditions. In order to test their adaptation to abiotic constraints; water requirements, yield (grain, dry matter) and water use efficiency (WUE) were correlated to three water stress: T100% of field capacity (T1), T60% of field capacity (T2) and T30% of field capacity (T3). Net irrigation water requirement was estimated using CROPWAT 8.0 software. The study aims to develop an irrigation scheduling for quinoa from January to Jun during 2015 season. The ET0 was between 1.08 mm/day and 4.95 mm/day and net irrigation water requirement was 287.2 mm. For grain yield, 1000 grains weight and dry matter production results show significant differences between cultivars and water stress. The seeds productivity of the five cultivars ranges between 2092.6kg/ha and 270kg/ha under full irrigation and it decreases to reach up 74% under T3 of field capacity stress in comparison with control stress. Similar results were shown for dry matter production. On refilling soil to field capacity with irrigation at critical depletion, 70% field efficiency was achieved which correspond to optimal condition, while adapting fixed interval per stage. For WUE, highest value of irrigation and total water use efficiency for both grain and dry matter  ​​were recorded to the T2 hydrous stress.


2017 ◽  
Author(s):  
Qian Cai ◽  
Yulong Zhang ◽  
Zhanxiang Sun ◽  
Jiaming Zheng ◽  
Wei Bai ◽  
...  

Abstract. There is a significant potential to increase yield of maize (Zea mays L.), a global major crop, in rain-fed condition in semi-arid regions, since the large yield gap is mainly caused by frequent droughts halfway the crop growing period due to uneven distribution of rainfall. It is questionable if irrigation systems are economically required in such a region since total amount of rainfall generally meet the crop requirement. This study therefore aimed to quantitatively determine the effects of water stress during jointing to filling stages on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter. The experiments consisted of three treatments: (1) no water stress; (2) mild water stress; and (3) severe water stress. Maize yield in mild water stress across two year was not significantly affected, while severe stress reduced yield by 56 %. Water stress decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting a no effect on root surface area. WU under water stress was decreased, while WUE for maize above-ground dry matter under mild water stress was increased by 20 % across all years, and 16 % for grain yield WUE. Our results demonstrates that irrigation systems in studied region might be not economically necessary because the mild water stress does not reduce crop yield. The study helps to understand crop responses to water stress during critical water-sensitive period and to mitigate drought risk in dry land agriculture.


1982 ◽  
Vol 33 (3) ◽  
pp. 511 ◽  
Author(s):  
RJ Lawn

Dry matter production, yield and water use efficiency of soybean (Glycine max), black gram (Vigna mungo), green gram (V. radiata) and cowpea (V. unguiculata) under irrigated, rain-fed fallowed and rain-fed double-cropped culture were evaluated at Dalby in south-east Queensland. Differential species responses to cultural treatments were related to strategies of growth and water use in response to water stress. The major effect of differences between strategies related to differences in the short term rate of soil water use, which together with the seasonal pattern of water availability influenced both the total, and seasonal pattern of water use. Regardless of strategy adopted, dry matter production was primarily a function of water use. However, seed yield and water use efficiency for seed yield depended on the seasonal pattern of water use. The relative agronomic success of the various strategies therefore depended on the seasonal profiles of water availability. Some implications of the differences in stress response strategy for adaptation of these species to agricultural environments are discussed.


2017 ◽  
Vol 14 (16) ◽  
pp. 3851-3858 ◽  
Author(s):  
Qian Cai ◽  
Yulong Zhang ◽  
Zhanxiang Sun ◽  
Jiaming Zheng ◽  
Wei Bai ◽  
...  

Abstract. A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root ∕ shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.


Sign in / Sign up

Export Citation Format

Share Document