scholarly journals Innovative Pro-Smallholder Farmers’ Permanent Mulch for Better Soil Quality and Food Security Under Conservation Agriculture

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 605
Author(s):  
Sibongiseni Mgolozeli ◽  
Adornis D. Nciizah ◽  
Isaiah I. C. Wakindiki ◽  
Fhatuwani N. Mudau

Soil degradation is the greatest threat to agricultural production globally. The practice of applying or retaining crop residues in the field as mulch is imperative to prevent soil erosion, maintain soil quality and improve crop productivity. However, smallholder farmers resort to maximizing profit by removing crop residues after harvest to sell or use them as feed for livestock. Agrimats are innovative pro-smallholder farming mulching materials that are manufactured using cheap or freely available organic waste materials. These materials include forestry waste, grasses, etc., therefore allowing smallholder farmers to make more profit through improved crop productivity for better food security. The most notable attributes of agrimats include their ability to prevent soil erosion, increase and sustain soil organic matter, suppress weeds, and conserve soil moisture. Food security challenge can be addressed by adopting agrimat technology as a sustainable permanent soil cover to improve soil quality and crop productivity. Agrimat incorporation in conservation agriculture practice could produce more food from less input resources (chemical fertilizers, water, etc.) with minimal or no adverse effect on the environment. This study aims to advocate permanent soil cover using agrimat as an innovative pro-smallholder farmer technology to improve soil quality for better food security.

2017 ◽  
Vol 9 (9) ◽  
pp. 168 ◽  
Author(s):  
Stanford Nkhoma ◽  
Thomson Kalinda ◽  
Elias Kuntashula

Despite efforts to systemically disseminate Conservation Agriculture (CA) technology in Luapula Province of Zambia, the adoption rate remains limited. Furthermore, no empirical evidence has been presented on the factors influencing adoption of the technology or the extent to which farmers’ livelihood has been influenced due to uptake of the technology. This study therefore examined the adoption and impact of CA on crop productivity and income on farming households in the Province. Using the 2012 Rural Agricultural Livelihood Survey (RALS) data, the study employed a probit regression model to identify factors influencing adoption of CA among the smallholder farmers in the Province. The probit regression analysis showed that advice on CA and access to wetlands/dambos by households increased the probability to adopt CA. The study also adopted the Propensity Score Matching (PSM) approach to help match the adopters and non-adopters based on observable covariates in order to assess technology impact by providing consistent estimates of the Average Treatment Effect on the Treated (ATT). The results showed a small but insignificant positive impact of CA on crop productivity and income. This suggests that adoption of CA has the potential to generate an improvement in farming households’ livelihood in Luapula Province, Zambia. Therefore, adoption of CA in Luapula Province should be explicitly encouraged. This can be further enhanced by increased access to quality extension services that incorporates promotion of CA practices among the smallholder farming households in the area.


2017 ◽  
Vol 6 (3) ◽  
pp. 85 ◽  
Author(s):  
Limson Kaluzi ◽  
Christian Thierfelder ◽  
David W. Hopkins

The increased threat of food insecurity and climate change requires more sustainable ways of agriculture intensification in African smallholder farming systems. Ample evidence confirms that maize-based conservation agriculture (CA) systems lead to increased soil health and yield enhancement yet their overall uptake remains low in Africa. An array of studies on challenges and solutions to CA systems conducted in southern Africa principally focussed on the views of scientists, often neglecting the views of CA farmers. Therefore, this study assessed farmer decision making, innovation and contexts during implementation of maize-based CA systems in communities of central Malawi. A survey involving interviews with 226 CA farmers was deployed, triangulated with key informants comprising extension workers and policy makers. The study showed that about 58% of smallholder farmers did not adapt CA practices to their circumstances because they were strictly following change agents’ recommendations. The major challenge noted was competition for crop residues due to mice hunters and grazing livestock. Local by-laws initiated by the communities have started to privatise the crop residues and its grazing. However, other innovations were often not documented by extension workers, consequently neglecting more than half of the potential solutions provided by farmers. The establishments of a National Conservation Agriculture Task Force and CA guidelines are positive developments for coordination of stakeholders and harmonisation of CA messages in Malawi. However, for greater adoption, non-linear interaction and learning must be encouraged in practice by fully embracing innovative farmers and the voices of the pool of stakeholders with varying experiences.


2014 ◽  
Vol 50 (4) ◽  
pp. 591-610 ◽  
Author(s):  
A. R. NGWIRA ◽  
JENS B. AUNE ◽  
C. THIERFELDER

SUMMARYAn on-farm study was conducted from 2009 to 2012 with communities in the Manjawira, Mpingu and Zidyana Extension Planning Areas in the Ntcheu, Lilongwe and Nkhotakota districts of central Malawi. The aim of the study was to evaluate the effects of the principles (no-tillage and mulching) and components (fertilization and weeding) of conservation agriculture (CA) on crop productivity and weeds, and the interactions between principles and components, and to suggest strategies for introducing CA to smallholder farmers. The treatments consisted of tillage, fertilizer application, residues management and weed control strategies. While combined analysis showed that mulching is as effective as tillage in controlling weeds, the interaction between site and treatment revealed that in the more humid environment of Zidyana, weed dry matter obtained under no-tillage and residues plus fertilizer (NT+F+R) was 0.6 mg ha−1lower than under CP+F. Results suggest that about 6.0 mg ha−1of mulch is required to have a similar effect as tillage in controlling weeds. Fertilizer had an overriding effect on maize yield, regardless of tillage and crop residue management. Mulching was beneficial over tillage in the drier environment of Manjawira, where maize yield obtained under NT+F+R was 1.2 mg ha−1greater than under CP+F. Our results show that the introduction of no tillage has benefits only if it is accompanied by fertilizer application, retention of crop residues as surface mulch, and improved weed control. Increasing availability and accessibility of inputs (fertilizers and herbicides) to farmers is critical for adoption of CA at scale in Malawi.


2012 ◽  
Vol 28 (4) ◽  
pp. 350-363 ◽  
Author(s):  
Amos Robert Ngwira ◽  
Christian Thierfelder ◽  
Dayton M. Lambert

AbstractConservation agriculture (CA) systems are based upon minimal soil disturbance; crop residue retention and crop rotation and/or intercrop association are increasingly seen to recycle nutrients, increase yield and reduce production costs. This study examines the effects of CA practices on crop productivity, profitability and soil quality under the conditions encountered by smallholder farmers in two farming communities from 2005 to 2011 in Malawi, as part of the contribution to remedy a lack of supporting agronomic research for these relatively new systems. The drier agroenvironment of Lemu of Bazale Extension Planning Area (EPA) is characterized by sandy clay loam soils and lower rainfall. Here, CA showed positive benefits on maize yield after the first season of experimentation, with highest increases of 2.7 Mg ha−1 and 2.3 Mg ha−1 more yield in CA monocrop maize and CA maize–legume intercrop, respectively, than the conventional tillage in the driest season of 2009/10. In the high rainfall environment of Zidyana EPA (characterized by sandy loam soils), substantial maize yield benefits resulted in the fifth season of experimentation. Farmers spent at most 50 days ha−1 (US$140) producing maize under CA systems compared with 62 days ha−1(US$176) spent under conventional tillage practices. In Lemu, both CA systems resulted in gross margins three times higher than that of the conventional control plot, while in Zidyana, CA monocrop maize and CA maize–legume intercrop resulted in 33 and 23% higher gross margins, respectively, than conventional tillage. In Zidyana, the earthworm population was highest (48 earthworms m−2 in the first 30 cm) in CA monocrop maize, followed by a CA maize–legume intercropping (40 earthworms) and lowest (nine earthworms) in conventionally tilled treatment. In both study locations CA monocrop maize and CA maize–legume intercrop gave higher water infiltration than the conventional treatment. Improvements in crop productivity, overall economic gain and soil quality have made CA an attractive system for farmers in Malawi and other areas with similar conditions. However, for extensive adoption of CA by smallholder farmers, cultural beliefs that crop production is possible without the ubiquitous ridge and furrow system and residue burning for mice hunting have to be overcome.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 974
Author(s):  
Rafael Blanco-Sepúlveda ◽  
Amilcar Aguilar-Carrillo ◽  
Francisco Lima

In conservation agriculture, the no-tillage cultivation system and the retention of permanent vegetal cover are crucial to the control of soil erosion by water. This paper analyses the cultivation of maize under no-tillage, with particular reference to the effect produced on soil erosion when weed control is performed by a hand tool (machete), which disturbs the surface of the soil, and to the behavior of the soil cover in these circumstances. The study area is located in the humid tropical mountains of northern Nicaragua (Peñas Blancas Massif Nature Reserve). The results obtained show that 59.2% of the soil surface was affected by appreciable levels of sheet and splash erosion, although the vegetal cover of the soil was relatively high (with average weed and litter cover of 33.9% and 33.8%, respectively). The use of machetes for weed control provoked considerable soil disturbance, which explained the high rates of erosion observed. Moreover, this form of soil management disturbs the litter layer, making it less effective in preventing erosion. The litter remains loose on the soil surface, and so an increase in soil cover does not achieve a proportionate reduction in the area affected by erosion; thus, even with 80–100% weed and litter cover, 42% of the cultivated area continued to present soil erosion.


2016 ◽  
Vol 32 (1) ◽  
pp. 87-103 ◽  
Author(s):  
W. Mupangwa ◽  
M. Mutenje ◽  
C. Thierfelder ◽  
I. Nyagumbo

AbstractContinuous conventional tillage coupled with unsystematic cereal/legume rotations has promoted low crop productivity on smallholder farms. A multi-locational study was established in three agro-ecoregions (AEs) of Zimbabwe. The aim of the study was to determine the effect of four tillage systems (conventional plowing, planting basins, rip-line and animal traction direct seeding systems) on maize (Zea mays L.), cowpea [Vigna unguiculata (L.) Walp] and soybean [Glycine max (L.) Merrill] yields, and evaluate the economic performance of the conservation agriculture (CA) systems relative to conventional plowing. Each farmer was a replicate of the trial over the three cropping seasons. In the high (750–1000 mm per annum) and low (450–650 mm) rainfall AEs, conventional practice and CA systems gave similar maize grain yield. Under medium rainfall conditions (500–800 mm) planting basins, rip-line and direct seeding systems gave 547, 548 and 1690 kg ha−1 more maize yield than the conventional practice. In the high and low rainfall AEs, conventional practice and planting basins had the lowest maize production risk. Cowpea yield was 35 and 45% higher in the rip-line and direct seeding than conventional practice. Soybean yield was higher in rip-line (36%) and direct seeding (51%) systems than conventional practice. Direct seeding system gave the highest net benefits in all AEs. A combination of long-term biophysical and socio-economic assessments of the different cropping systems tested in our study is critical in order to fully understand their performance under different AEs of Zimbabwe.


2022 ◽  
pp. 270-283
Author(s):  
Christian Thierfelder ◽  
Peter Steward

Abstract Climate change and soil fertility decline are threatening food security in southern Africa and efforts have been made to adapt current cropping systems to the needs of smallholder farmers. Conservation Agriculture (CA) based on minimum soil disturbance, crop residue retention and crop diversification has been proposed as a strategy to address the challenges smallholder farmers face. Here we analyse the potential contributions of CA towards adaptation to the effects of climate change by summarizing data on infiltration, soil moisture dynamics and crop productivity under heat and drought stress. The data were taken in the main from CIMMYT's on-farm and on-station trial network. Data show that CA systems maintain 0.7-7.9 times higher water infiltration than the conventional tilled system depending on soil type, which increases soil moisture during the cropping season by 11%-31% between CA treatments and the conventional control treatment. This leads to greater adaptive capacity of CA systems during in-season dry spells and under heat stress. A supporting regional maize productivity assessment, analysing the results of numerous on-farm and on-station experiments, showed that CA systems will outperform conventional tillage practices (CP), especially on light-textured soils, under heat and drought stress. With higher rainfall and low heat stress, this relation was more positive towards CP and on clay soil there was no benefit of practising CA when rainfall was high. The long dry season and limited biomass production of CA systems in southern Africa require complementary good agricultural practices to increase other soil quality parameters (e.g. increased soil carbon) to maintain higher productivity and sustainability over time. This can be addressed by combinations of improved stress-tolerant seed, targeted fertilization, inclusion of tree-based components or green manure cover crops in the farming system, scale-appropriate mechanization and improved weed control strategies.


2014 ◽  
Vol 30 (4) ◽  
pp. 550-559 ◽  
Author(s):  
J. Nyamangara ◽  
A. Marondedze ◽  
E. N. Masvaya ◽  
T. Mawodza ◽  
R. Nyawasha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document