scholarly journals An Arable Field for Benchmarking of Metaheuristic Algorithms for Capacitated Coverage Path Planning Problems

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1454 ◽  
Author(s):  
Erfan Khosravani Moghadam ◽  
Mahdi Vahdanjoo ◽  
Allan Leck Jensen ◽  
Mohammad Sharifi ◽  
Claus Aage Grøn Sørensen

This study specifies an agricultural field (Latitude = 56°30′0.8″ N, Longitude = 9°35′27.88″ E) and provides the absolute optimal route for covering that field. The calculated absolute optimal solution for this field can be used as the basis for benchmarking of metaheuristic algorithms used for finding the most efficient route in the field. The problem of finding the most efficient route that covers a field can be formulated as a Traveling Salesman Problem (TSP), which is an NP-hard problem. This means that the optimal solution is infeasible to calculate, except for very small fields. Therefore, a range of metaheuristic methods has been developed that provide a near-optimal solution to a TSP in a “reasonable” time. The main challenge with metaheuristic methods is that the quality of the solutions can normally not be compared to the absolute optimal solution since this “ground truth” value is unknown. Even though the selected benchmarking field requires only eight tracks, the solution space consists of more than 1.3 billion solutions. In this study, the absolute optimal solution for the capacitated coverage path planning problem was determined by calculating the non-working distance of the entire solution space and determining the solution with the shortest non-working distance. This was done for four scenarios consisting of low/high bin capacity and short/long distance between field and storage depot. For each scenario, the absolute optimal solution and its associated cost value (minimum non-working distance) were compared to the solutions of two metaheuristic algorithms; Simulated Annealing Algorithm (SAA) and Ant Colony Optimization (ACO). The benchmarking showed that neither algorithm could find the optimal solution for all scenarios, but they found near-optimal solutions, with only up to 6 pct increasing non-working distance. SAA performed better than ACO, concerning quality, stability, and execution time.

2021 ◽  
Vol 13 (8) ◽  
pp. 1525
Author(s):  
Gang Tang ◽  
Congqiang Tang ◽  
Hao Zhou ◽  
Christophe Claramunt ◽  
Shaoyang Men

Most Coverage Path Planning (CPP) strategies based on the minimum width of a concave polygonal area are very likely to generate non-optimal paths with many turns. This paper introduces a CPP method based on a Region Optimal Decomposition (ROD) that overcomes this limitation when applied to the path planning of an Unmanned Aerial Vehicle (UAV) in a port environment. The principle of the approach is to first apply a ROD to a Google Earth image of a port and combining the resulting sub-regions by an improved Depth-First-Search (DFS) algorithm. Finally, a genetic algorithm determines the traversal order of all sub-regions. The simulation experiments show that the combination of ROD and improved DFS algorithm can reduce the number of turns by 4.34%, increase the coverage rate by more than 10%, and shorten the non-working distance by about 29.91%. Overall, the whole approach provides a sound solution for the CPP and operations of UAVs in port environments.


Author(s):  
Aleksandr Ianenko ◽  
Alexander Artamonov ◽  
Georgii Sarapulov ◽  
Alexey Safaraleev ◽  
Sergey Bogomolov ◽  
...  

2006 ◽  
Vol 63 (8) ◽  
pp. 1752-1762 ◽  
Author(s):  
Matthew L Keefer ◽  
Christopher C Caudill ◽  
Christopher A Peery ◽  
Theodore C Bjornn

Upstream-migrating adult salmon must make a series of correct navigation and route-selection decisions to successfully locate natal streams. In this field study, we examined factors influencing migration route selections early in the migration of 4361 radio-tagged adult Chinook salmon (Oncorhynchus tshawytscha) as they moved upstream past dams in the large (~1 km wide) Columbia River. Substantial behavioral differences were observed among 11 conspecific populations, despite largely concurrent migrations. At dams, Chinook salmon generally preferred ladder passage routes adjacent to the shoreline where their natal tributaries entered, and the degree of preference increased as salmon proximity to natal tributaries increased. Columbia River discharge also influenced route choices, explaining some route selection variability. We suggest that salmon detect lateral gradients in orientation cues across the Columbia River channel that are entrained within tributary plumes and that these gradients in cues can persist downstream for tens to hundreds of kilometres. Detection of tributary plumes in large river systems, using olfactory or other navigation cues, may facilitate efficient route selection and optimize energy conservation by long-distance migrants.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Juan-Ignacio Latorre-Biel ◽  
Emilio Jiménez-Macías ◽  
Mercedes Pérez de la Parte ◽  
Julio Blanco-Fernández ◽  
Eduardo Martínez-Cámara

Artificial intelligence methodologies, as the core of discrete control and decision support systems, have been extensively applied in the industrial production sector. The resulting tools produce excellent results in certain cases; however, the NP-hard nature of many discrete control or decision making problems in the manufacturing area may require unaffordable computational resources, constrained by the limited available time required to obtain a solution. With the purpose of improving the efficiency of a control methodology for discrete systems, based on a simulation-based optimization and the Petri net (PN) model of the real discrete event dynamic system (DEDS), this paper presents a strategy, where a transformation applied to the model allows removing the redundant information to obtain a smaller model containing the same useful information. As a result, faster discrete optimizations can be implemented. This methodology is based on the use of a formalism belonging to the paradigm of the PN for describing DEDS, the disjunctive colored PN. Furthermore, the metaheuristic of genetic algorithms is applied to the search of the best solutions in the solution space. As an illustration of the methodology proposal, its performance is compared with the classic approach on a case study, obtaining faster the optimal solution.


Sign in / Sign up

Export Citation Format

Share Document