scholarly journals Root Traits Related with Drought and Phosphorus Tolerance in Common Bean (Phaseolus vulgaris L.)

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 552
Author(s):  
Samuel Camilo ◽  
Alfred O. Odindo ◽  
Aleck Kondwakwenda ◽  
Julia Sibiya

Roots are key organs for water and nutrient acquisition and transport. Therefore, root phenes that are associated with adaptation to low phosphorus (P) environments could enhance top-soil exploration, while deeper allocation is important for acquiring water and mobile nutrients. The understanding of interactions among root phenes can help in the development of common bean (Phaseolus vulgaris L.) genotypes adapted to drought and low fertility through genetic improvement. Two experiments (pot and field) were conducted at the Agricultural Research Institute of Mozambique to assess the contribution of root phenes to common bean shoot biomass and grain yield under combined stress (drought and low P). The pot study assessed eight genotypes, with four treatments combining water regimes (drought and non-stress) and phosphorus levels (200 and 25) mg P kg−1 soil. In the field study, 24 common bean genotypes were also grown in high and low phosphorus (40 kg P ha−1 and without P application) under irrigation and limited water. The grain yield from fields under drought and P stress were correlated with the pot data on root traits. The response of root phenes to drought and phosphorus stress appeared to be related to the deep and shallow root systems, respectively. Deep rooted genotypes produced more total root biomass and high taproot lateral branching density, which resulted in high total root length under drought and low P stress, while shallow rooted genotypes had low total root biomass and less taproot lateral branching. Increased shoot biomass and grain yield under drought and low P was associated with higher mean values of taproot lateral branching density and total taproot length. Genotypes SER 125, BFS 81, FBN12111-66 and MER 22 11-28 showed a greater score of tap root branching density in the pot study with the highest grain yield in the field under low P and drought stress. Therefore, these can be recommended for use in low phosphorus and drought stress environment or serve as parents for improving phosphorus use efficiency and drought tolerance in common bean.

1977 ◽  
Vol 34 (0) ◽  
pp. 551-563
Author(s):  
A.M.L. Neptune ◽  
T. Muraoka

An experiment was carried out with common bean (Phaseolus vulgaris, L.) in a Red Yellow Latossol, sandy phase, in order to study the influence of foliar spraying of the Hanway nutrient solution (NPKS) at grain filling stage on: 1) grain yield; 2) the uptake of fertilizer and soil nitrogen by this crop through the root system and 3) the efficiency of utilization of the nitrogen in the foliar spray solution by the grain. The results of this experiment showed that the foliar application of the Hanway solution with ammonium nitrate at the pod filling period caused severe leaf burn and grain yield was inferior to that of the plants which received a soil application of this fertilizer at the same stage. These facts can be attributed to the presence of ammonium nitrate in the concentration used. The composition of final spray was: 114,28 Kg NH4NO3 + 43,11 Kg potassium poliphosphate + 12,44 Kg potassium sulphate per 500 litres. The uptake of nitrogen fertilizer through the root system and the efficiency of its utilization was greater than that through the leaves.


2008 ◽  
Vol 51 (6) ◽  
pp. 1089-1096 ◽  
Author(s):  
João Francisco Berton Junior ◽  
Julio Cesar Pires Santos ◽  
Cileide Maria Medeiros Coelho ◽  
Osmar Klauberg Filho

The objective of this work was to evaluate the efficiency of nitrogen fixing inoculum associated with Co + Mo leaf spray on the common bean grain yield and grain nutrients, cv. FT Nobre. Three dosages of the inoculant (0, 200 and 400 g/50 kg seeds), combined with four Co + Mo leaf spray levels (T0=0,0; T1=4.9,49; T2=7.3,73; and T3=9.7,97 g ha-1 of Co and Mo, respectively) were tested. The grain yield with the use of the inoculant (400 g / 5O kg seed-1) associated with the higher level of Co+Mo (T2 and T3) was very similar to the mineral nitrogen condition fertilizer recommended for the bean (70 kg ha-1 of N). With the increased inoculant dosage, an increase of the protein content and of P and Mg in the grain was also observed. The results indicated that the mineral nitrogen source could be replaced by inoculation of the seeds with Rhizobium tropici combined with Co + Mo leaf spray.


2016 ◽  
Vol 4 (5) ◽  
pp. 367-376 ◽  
Author(s):  
Kwabena Darkwa ◽  
Daniel Ambachew ◽  
Hussein Mohammed ◽  
Asrat Asfaw ◽  
Matthew W. Blair

2013 ◽  
Vol 78 ◽  
pp. 254-272 ◽  
Author(s):  
Tanja Zadražnik ◽  
Kristin Hollung ◽  
Wolfgang Egge-Jacobsen ◽  
Vladimir Meglič ◽  
Jelka Šuštar-Vozlič

2021 ◽  
Vol 17 (6) ◽  
pp. 875-881
Author(s):  
Aliel Kachiguma Nathan ◽  
E. Ifie Beatrice ◽  
S. Y. Eleblu John ◽  
F. A. Maliro Moses ◽  
B. Tongoona Pangirayi ◽  
...  

Author(s):  
Laily Ilman Widuri ◽  
Benyamin Lakitan ◽  
Erizal Sodikin ◽  
Mery Hasmeda ◽  
Mei Meihana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document