scholarly journals Site-Specific Nutrient Management

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 752
Author(s):  
Witold Grzebisz

The editorial introduces to a Special Issue entitled ”Site-Specific Nutrient Management. The concept of the nitrogen gap (NG) is as a core challenge for an effective realization of the so called “twin objectives” in sustainable agriculture. This special issue stresses on some hot spots in crop production, being responsible in the yield gap development, that farmers have to take control. The yield gap cannot be ameliorated without the synchronization of the in-season requirements of the currently grown crop for N with its three-dimensional variability in a supply on a field (temporal, spatial and vertical). A recognition of soil fertility status in the rooted zone, which includes availability of both mineral N and nutrients decisive for its uptake, is the first step in the NG amelioration. The sustainability in soil fertility, as a prerequisite of N fertilizer application, requires a wise strategy of organic matter management, based on farmyard manure, and/or cultivation of legumes. The soil fertility status, irrespectively of the World region determines ways of the N rate optimization. The division of a particular field into homogenous productive units is the primary step in the NG cover. It can be delineated, using both data on soil physico-chemical properties of the soil rooted zone, and then validated by using satellite spectral images of the crop biomass in a well-defined stage of its growth, decisive for yield. The proposed set of diagnostic tools is a basis for elaboration an effective agronomic decision support system.

2005 ◽  
Vol 25 (4) ◽  
pp. 69-92 ◽  
Author(s):  
J. O. Fening ◽  
T. Adjei-Gyapong ◽  
E. Yeboah ◽  
E. O. Ampontuah ◽  
G. Quansah ◽  
...  

2020 ◽  
Vol 12 (21) ◽  
pp. 9010
Author(s):  
Kamaluddin T. Aliyu ◽  
Alpha Y. Kamara ◽  
Jibrin M. Jibrin ◽  
Jeroen E. Huising ◽  
Bello M. Shehu ◽  
...  

Site-specific nutrient management can reduce soil degradation and crop production risks related to undesirable timing, amount, and type of fertilizer application. This study was conducted to understand the spatial variability of soil properties and delineate spatially homogenous nutrient management zones (MZs) in the maize belt region of Nigeria. Soil samples (n = 3387) were collected across the area using multistage and random sampling techniques, and samples were analyzed for pH, soil organic carbon (SOC), macronutrients (N, P, K, S, Ca and Mg), micronutrients (S, B, Zn, Mn and Fe) content, and effective cation exchange capacity (ECEC). Spatial distribution and variability of these parameters were assessed using geostatistics and ordinary kriging, while principal component analysis (PCA) and multivariate K-means cluster analysis were used to delineate nutrient management zones. Results show that spatial variation of macronutrients (total N, available P, and K) was largely influenced by intrinsic factors, while that of S, Ca, ECEC, and most micronutrients was influenced by both intrinsic and extrinsic factors with moderate to high spatial variability. Four distinct management zones, namely, MZ1, MZ2, MZ3, and MZ4, were identified and delineated in the area. MZ1 and MZ4 have the highest contents of most soil fertility indicators. MZ4 has a higher content of available P, Zn, and pH than MZ1. MZ2 and MZ3, which constitute the larger part of the area, have smaller contents of the soil fertility indicators. The delineated MZs offer a more feasible option for developing and implementing site-specific nutrient management in the maize belt region of Nigeria.


2016 ◽  
Vol 8 (4) ◽  
pp. 1912-1918
Author(s):  
Dipika Rana ◽  
Haseeb U. R. Masoodi

The findings of this research provide information on various approaches to manage and maintain soil fertility for organic crop production through composting. The initial recorded data pertaining to various conventional farming practices showed very low soil fertility status, low productivity before the initiation of organic farming. In the year prior to 2006 pH was low (4.10) and it increased to 5.40 by 2006-07. Organic carbon percentage increased to 1.35 in 2006-07 and the value of phosphorus was very low in the previous year but increased in the year 2006-07 (6.00 Kg/ha) while Potassium value increased in the year 2006-07 (395.00 Kg/ha). Input use pattern of various composts was also evaluated and it was observed that higher rates of FYM was used in case of maize-wheat+gram (614.31q/ha) in 2006-07 while higher rates of vermicompost was used in case of soybean-pea system i.e 111.11 q/ha for the year 2006-07. It was found that in the year 2006-07, among the cereals, yield of wheat was the highest (15.56 q/ha), among pulses soybean dominated (13.04 q/ha). The yield of potato (74.88 q/ha) was the highest among vegetable crops. For the year 2007-08, the yield of wheat+ lentil was the highest (10.86 q/ha). Among the pulses again yield of soybean was the highest (6.14 q/ha) and potato showed the highest yield among vegetables (73.88 q/ha). It showed that the application of compost had direct effect on productivity as the application of compost in the year 2007-08 decreased the productivity decreased subsequently as compared to initial year i.e 2006-07.


Author(s):  
E. M. Muya ◽  
J. M. Miriti ◽  
M. Radiro ◽  
A. Esilaba ◽  
A. L. Chek ◽  
...  

A study was carried out in Kenya Cereal Enhancement Project site in Western region of Kenya to examine the soil fertility status in relation to the current blanket fertilizer recommendations and farmers’ practices across the four wards, namely: Motosiet, Keiyo, Cherangani and Kwanza. The baseline fertility status in different soil mapping units was assessed in terms of soil productivity index with a view of analyzing the levels of nutrients and yield gaps. Using the standard soil survey procedures, six soil mapping units were identified as UUr1, UUr2, UUr3, RUd, RUrb, and BU1.. The results showed that the highest productivity index was in unit BU1, followed by UUr1, UUr2, UUr3, and RUrb with values of 40.5, 29.4, 25.0, 16.0 and 8.9% respectively.  Keiyo Ward had the highest level of nitrogen, being 125.82, followed by Motosiet, Cherangani and Kwanza with values of 99.92, 97.12, and 81.12 kg/ha respectively. Phosphorous level was highest in Kwanza (136.41 kg/ha), followed by Cherangani (106.82 kg/ha) and Keiyo Ward (76.08 kg/ha). The lowest level was recorded in Motosiet with the value of 72.56 kg/ha. Potassium was found to be adequate in all the four Wards with values ranging between 347.67 and 410.34 kg/ha. The maximum maize production recorded in the project sites was 9,000 kg/ha, with a yield gap of 1,000 kg/ha. This was achieved through application of 100 and 50 kg/ha of DAP and CAN respectively. This was followed by 6,750 kg/ha obtained through application of 50 kg/ha of DAP and CAN. The yields from the rest of the sites ranged between 1,800 and 4,500 kg/ha with yield gaps varying from 3,250 to 8,650 kg/ha. The lowest yields were obtained in Keiyo, followed by Kwanza Ward despite the relatively high macro- nutrient levels in the soils of the two Wards. This was attributed to soil-related constraints caused by the increased soil structural degradation and loss of soil tilth. Therefore, it is recommended that the envisaged climate smart technologies be geared towards enhancement of nutrient and water use efficiency through improved soil structure and tilth.


1984 ◽  
Vol 102 (1) ◽  
pp. 215-218 ◽  
Author(s):  
K. N. Sharma ◽  
Bijay Singh ◽  
D. S. Rana ◽  
M. L. Kapur ◽  
J. S. Sodhi

SummaryChanges in soil fertility status brought about by the application of P and K fertilizers and farmyard manure (FYM) to a fixed wheat-maize rotation for 10 years in a calcic ustochrept are reported. The treatments comprised three rates of P (0, 30 and 60 kg P2O5/ha), two rates of K (0 and 30 kg K2O/ha) and two rates of FYM (0 and 15 t/ha) applied to maize or wheat alone or to both the crops. Organic carbon and available P and K contents of the soil increased significantly with the addition of FYM. P application at 60 kg P2O5/ha nearly maintained the original level of available P even after 10 years of continuous cropping. However, a considerable and highly significant increase in available P was obtained with the combined application of P and FYM. Available K status of the soil remained more or less unaffected by K application. Organic carbon content, and available P and K contents were significantly higher in the plots that received fertilizers and manure for both the crops than in those where the application was to maize or wheat alone.


Sign in / Sign up

Export Citation Format

Share Document