scholarly journals Impact of Cover Crop Usage on Soilborne Diseases in Field Nursery Production

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 753 ◽  
Author(s):  
Sujan Dawadi ◽  
Fulya Baysal-Gurel ◽  
Karla M. Addesso ◽  
Jason B. Oliver ◽  
Terri Simmons

Soilborne pathogens are a significant economic problem for nursery production in the Southeastern United States. The goal of this study was to determine the impact of cover crops on soilborne disease suppressiveness in such systems. Soils from red maple (Acer rubrum L.) plantation fields grown with and without cover crops were sampled, either while the cover crops were growing (pre-disked) or post-season, following cover crop incorporation into the soil (post-disked). Greenhouse bioassays were conducted using red maple seeds on inoculated (with Rhizoctonia solani (J.G. Kühn) or Phytophthora nicotianae (Breda de Haan)) and non-inoculated field soils. The damping-off, root rot disease severity, percent recovery of Rhizoctonia and Phytophthora, and pseudomonad population were examined during the two years of the experiment. Results showed that cover crop incorporation was beneficial for inducing disease supressiveness characteristics of soil. Cover crop incorporation into the soil significantly or numerically reduced disease severity and pathogen recovery in infested soil compared to the bare soil treatment. Cover crop incorporation was found to be partially associated with the reduction of seedling damping-off. The pseudomonad microbial population was greater when cover crop was present, and is thought to be antagonist to soilborne pathogens. Therefore, cover crops can be integrated in field nursery production systems to suppress soilborne pathogens.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 995 ◽  
Author(s):  
Milan Panth ◽  
Fulya Baysal-Gurel ◽  
Terri Simmons ◽  
Karla M. Addesso ◽  
Anthony Witcher

Diseases caused by soilborne pathogens are a major limitation to field grown nursery production. The application of cover crops for soilborne disease management has not been widely investigated in a woody ornamental nursery production system. The objective of this study was to explore the impact of winter cover crops usage on soilborne disease management in that system. Soils from established field plots of red maple (Acer rubrum L.) with and without winter cover crops (crimson clover (Trifolium incarnatum L.) or triticale (× Triticosecale W.)) were sampled following the senescence of the cover crops. Separate bioassays were performed using red maple cuttings on inoculated (with Phytopythium vexans, Phytophthora nicotianae or Rhizoctonia solani) and non-inoculated field soils. The results indicated that winter cover crop usage was helpful for inducing soil disease suppressiveness. There was lower disease severity and pathogen recovery when the cover crops were used compare to the non-cover cropped soil. However, there were no differences in maple plant fresh weight and root weight between the treatments. The rhizosphere pseudomonad microbial population was also greater when the cover crops were used. Similarly, the C:N ratio of the soil was improved with the cover crop usage. Thus, in addition to improving soil structure and reducing erosion, cover crops can provide improved management of soilborne diseases. Therefore, stakeholders can consider cover crop usage as an alternative sustainable management tool against soilborne diseases in field nursery production system.



Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 742
Author(s):  
Milan Panth ◽  
Anthony Witcher ◽  
Fulya Baysal-Gurel

Management of plant diseases is a subject of concern for researchers as well as growers. Different management practices are being developed and used to combat the rising number of plant pathogens, which threaten nursery crop production. Use of cover crops for sustainable management of soilborne diseases is being explored as an alternative strategy to the chemicals. However, the potential threat of these cover crops acting as a secondary host of these devastating soilborne pathogens has not been described. We studied the response of the major cover crops being used by woody ornamental growers in the Southeastern United States to Phytopythium vexans, Phytophthora nicotianae, and Rhizoctonia solani in greenhouse conditions to identify the effective cover crops that can be used in a nursery field production system. Data related to post-emergence damping-off and plant growth parameters (plant height increase and fresh weight) were recorded. Similarly, cover crop roots were assessed for root rot disease severity using a scale of 0–100% roots affected. Among the tested cover crops, the grass cover crops triticale (×Triticosecale Wittm. ex A. Camus.), annual ryegrass (Lolium multiflorum L.), Japanese millet (Echinochloa esculenta (A. Braun) H. Scholz), and the legumes Austrian winter pea (Pisum sativum var. arvense (L.) Poir) and cowpea ‘Iron and Clay’ (Vigna unguiculata (L.) Walp.), showed lower root rot disease severity and post-emergence damping-off in the soil inoculated with P. nicotianae, R. solani, or P. vexans compared to the other crops. Since these cover crops can act as non-host crops and benefit the main crop in one way or another, they can be used in the production system. Further research is recommended to evaluate their performance in a natural field setting.



2016 ◽  
Vol 42 (4) ◽  
Author(s):  
Edward Gilman ◽  
Chris Harchick ◽  
Maria Paz

The purpose of this study was to evaluate growth and anchorage one year after landscape planting of red maple (Acer rubrum L. ‘Florida Flame’) from both a field and container nursery that were stabilized with above- or belowground systems. Trunk diameter increased more for trees planted from containers with soilless substrate (17 mm) than trees with a soil root ball from a field nursery (14 mm); however, there was no impact of nursery production method on tree height. Trees secured with a guying system grew less in trunk diameter than trees secured with a belowground system, with a tall wood stake system, or the non-staked control. Guyed trees were taller than trees secured with a root-ball stabilization system. More bending stress was required to winch trees transplanted from the field nursery than trees from containers immediately after releasing stakes one year after planting. There was no difference among stabilization systems in bending stress to winch to any trunk tilt angle, indicating similar anchorage across systems. Moreover, trees stabilized for one year required the same bending stress to winch as controls, indicating that stabilizing trees for one year with any of the systems tested did not reduce anchorage compared to non-stabilized trees.



Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 372
Author(s):  
Lucas Clay ◽  
Katharine Perkins ◽  
Marzieh Motallebi ◽  
Alejandro Plastina ◽  
Bhupinder Singh Farmaha

Cover crops are becoming more accepted as a viable best management practice because of their ability to provide important environmental and soil health benefits. Because of these benefits, many land managers are strongly encouraging the use of cover crops. Additionally, there is limited information on farmers′ perceptions of the benefits and challenges of implementing cover crops. Many farmers state that they do not have enough money or time to implement cover crops. In an attempt to gather more data about the adoption rate and perceptions of cover crops in South Carolina, a survey was sent to 3000 row crop farmers across the state. Farmers were asked whether they implement cover crops and their perceptions of the benefits and challenges associated with implementation. Furthermore, questions were asked regarding the impact of row cropping on their environment to gauge farmer′s education level on environmental impacts. Responses showed many people are implementing cover crops; however, there are still differences in perceptions about benefits and challenges between those who are adopting cover crops and those who are not. This research assesses these differences and aims to provide a baseline for focusing cover crop programs to tackle these certain challenges and promote the benefits.



2017 ◽  
Vol 34 (1) ◽  
pp. 62-76 ◽  
Author(s):  
Jason S. Bergtold ◽  
Steven Ramsey ◽  
Lucas Maddy ◽  
Jeffery R. Williams

AbstractOver the past few decades, farmers have increasingly integrated cover crops into their cropping systems. Cover-crop benefits can help a farmer to achieve sustainability or reduce negative environmental externalities, such as soil erosion or chemical runoff. However, the impact on farm economics will likely be the strongest incentive to adopt cover crops. These impacts can include farm profits, cash crop yields or both. This paper provides a review of cover-crop adoption, production, risk and policy considerations from an economic perspective. These dimensions are examined through a review of cover-crop literature. This review was written to provide an overview of cover crops and their impacts on the farm business and the environment, especially with regard to economic considerations. Through increasing knowledge about cover crops, the intent here is to inform producers contemplating adoption and policy makers seeking to encourage adoption.



Weed Science ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 151-163 ◽  
Author(s):  
Erin R. Haramoto ◽  
Daniel C. Brainard

The objectives of this research were to evaluate temporal and spatial variability in the impact of strip tillage and oat cover crop residue on Powell amaranth emergence and to determine the role of rainfall in mediating these effects. In field experiments conducted in 2010, 2011, and 2012, Powell amaranth seeds were sown in a fully factorial combination of two tillage types (strip tillage [ST] vs. full-width tillage [FWT]) and cover crop residue (oats vs. none) at either 0 d after tillage (DAT) or 7 to 13 DAT to monitor emergence at two timings. In ST plots, seeds were sown both in the tilled zone (“in-row,” IR), and between these tilled zones (“between-row,” BR). In 2011 and 2012, three levels of rainfall were simulated in subplots by either excluding rainfall, allowing natural rainfall, or supplementing rainfall with irrigation. In most cases, ST and oats residue either had no effect on or suppressed emergence of Powell amaranth sown at the early planting date. In contrast, the emergence response to ST and residue at the later planting date was generally smaller and more variable, with increases in emergence observed in several cases. Differences between tillage systems in emergence were most pronounced in the BR zone but also occurred IR in some cases, suggesting that interzonal effects on biotic or abiotic factors influenced emergence. Oat residue effects—but rarely tillage effects—were often mediated by simulated rainfall, with increases in emergence occurring mostly in dry conditions and decreases occurring more commonly in wetter conditions. These results demonstrate that the suppressive effects of cover crops and ST on weed emergence are inconsistent, temporally and spatially variable, and dependent on complex interactions with factors including rainfall.



2012 ◽  
Vol 26 (4) ◽  
pp. 832-838 ◽  
Author(s):  
Justin D. DeVore ◽  
Jason K. Norsworthy ◽  
Kristofor R. Brye

Glyphosate-resistant Palmer amaranth has become a major problem for cotton producers throughout much of the southern United States. With cotton producers relying heavily on glyphosate-resistant cotton, an alternative solution to controlling resistant Palmer amaranth is needed. A field experiment was conducted during 2009 and 2010 at Marianna, AR, in which a rye cover crop and no cover crop were tested in combination with deep tillage with the use of a moldboard plow and no tillage to determine the impact on Palmer amaranth emergence in cotton. To establish a baseline population, 500,000 glyphosate-resistant Palmer amaranth seeds were placed in a 2-m2area in the middle of each plot and incorporated into the soil, and emergence was evaluated five times during the season. In 2009, both tillage and the cover crop reduced Palmer amaranth emergence in cotton, but the combination of the two reduced emergence 85%. In the second year, only the cover crop reduced Palmer amaranth emergence in cotton, a 68% reduction. Cover crops and deep tillage will not eliminate glyphosate-resistant Palmer amaranth; however, use of these tools will likely reduce the risks of failures associated with residual herbicides along with selection pressure placed on both PRE- and POST-applied herbicides. Additional efforts should focus on the integration of the best cultural practices identified in this research with use of residual herbicides and greater focus on limiting Palmer amaranth seed production and reducing the soil seedbank.



Nitrogen ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 415-427
Author(s):  
Arthur Siller ◽  
Heather Darby ◽  
Alexandra Smychkovich ◽  
Masoud Hashemi

There is growing interest in malting barley (Hordeum vulgare L.) production in the Northeastern United States. This crop must meet high quality standards for malting but can command a high price if these quality thresholds are met. A two-year field experiment was conducted from 2015 to 2017 to evaluate the impact of two leguminous cover crops, sunn hemp (Crotalaria juncea L.) and crimson clover (Trifolium incarnatum L.), on subsequent winter malting barley production. Four cover crop treatments—sunn hemp (SH), crimson clover (CC), sunn hemp and crimson clover mixture (SH + CC), and no cover crop (NC)—were grown before planting barley at three seeding rates (300, 350, and 400 seeds m−2). SH and SH + CC produced significantly more biomass and residual nitrogen than the CC and NC treatments. Higher barley seeding rates led to higher seedling density and winter survival. However, the subsequent spring and summer barley growth metrics, yield, and malting quality were not different in any of the treatments. There is much left to investigate in determining the best malting barley production practices in the Northeastern United States, but these results show that winter malting barley can be successfully integrated into crop rotations with leguminous plants without negative impacts on barley growth, yield, and grain quality.



HortScience ◽  
2006 ◽  
Vol 41 (5) ◽  
pp. 1347-1350 ◽  
Author(s):  
James Altland

Franksred red maple (Acer rubrum `Franksred') trees were sampled from nursery fields in 2003 and 2004 to determine the cause of a common foliar chlorosis. Plots in 21 and 39 different nurseries were identified in 2003 and 2004, respectively. A single plot from each nursery was sampled in June of each year, whereas two to four plots per nursery were sampled in September. Each plot consisted of 20 consecutive trees in a single row. From each plot, a foliar tissue sample was analyzed for the complete range of essential nutrients. Plant height, stem diameter, leaf chlorophyll content, and a subjective plant quality rating were also recorded. From each plot, a soil sample was collected and analyzed for pH, EC, organic matter, and a range of essential nutrients. The foliar chlorosis was determined to be incited by manganese (Mn) deficiency. Tissue Mn was highly correlated with soil pH. Chlorotic plants were smaller with less stem diameter than nonchlorotic plants. Sufficiency ranges for tissue and soil tests were determined and are provided for red maple nursery production.



2020 ◽  
Vol 12 (12) ◽  
pp. 5104
Author(s):  
Megan N. Hughes ◽  
Michael R. Langemeier

Utilizing cover crop treatments can have significant agronomic benefits for a farm enterprise. However, implementing this technology introduces additional costs. Data were obtained from a Central Indiana case farm to evaluate the relationship between applied nitrogen and corn yield, and how this relationship is impacted by introducing three different species of cover crops: annual ryegrass, cereal rye, and an oats and radish blend. The resulting information was then translated into a partial budget so that the effects on net returns could be analyzed using historical prices and stochastic modelling. The results showed that the impact on net returns per acre varied among cover crop species. The implementation of annual ryegrass resulted in a negative change to net returns. Conversely, implementing cereal rye or an oats and radish blend resulted in a positive change to net returns, with the largest net benefits accruing to the oats and radish blend.



Sign in / Sign up

Export Citation Format

Share Document