scholarly journals Impact of Winter Cover Crop Usage in Soilborne Disease Suppressiveness in Woody Ornamental Production System

Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 995 ◽  
Author(s):  
Milan Panth ◽  
Fulya Baysal-Gurel ◽  
Terri Simmons ◽  
Karla M. Addesso ◽  
Anthony Witcher

Diseases caused by soilborne pathogens are a major limitation to field grown nursery production. The application of cover crops for soilborne disease management has not been widely investigated in a woody ornamental nursery production system. The objective of this study was to explore the impact of winter cover crops usage on soilborne disease management in that system. Soils from established field plots of red maple (Acer rubrum L.) with and without winter cover crops (crimson clover (Trifolium incarnatum L.) or triticale (× Triticosecale W.)) were sampled following the senescence of the cover crops. Separate bioassays were performed using red maple cuttings on inoculated (with Phytopythium vexans, Phytophthora nicotianae or Rhizoctonia solani) and non-inoculated field soils. The results indicated that winter cover crop usage was helpful for inducing soil disease suppressiveness. There was lower disease severity and pathogen recovery when the cover crops were used compare to the non-cover cropped soil. However, there were no differences in maple plant fresh weight and root weight between the treatments. The rhizosphere pseudomonad microbial population was also greater when the cover crops were used. Similarly, the C:N ratio of the soil was improved with the cover crop usage. Thus, in addition to improving soil structure and reducing erosion, cover crops can provide improved management of soilborne diseases. Therefore, stakeholders can consider cover crop usage as an alternative sustainable management tool against soilborne diseases in field nursery production system.

2014 ◽  
Vol 18 (12) ◽  
pp. 5239-5253 ◽  
Author(s):  
I.-Y. Yeo ◽  
S. Lee ◽  
A. M. Sadeghi ◽  
P. C. Beeson ◽  
W. D. Hively ◽  
...  

Abstract. Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990–2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha−1, but decreased to 4.6–10.1 kg ha−1 with cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~ 2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implementation of cover crop programs, in part by helping to target critical pollution source areas for cover crop implementation.


2013 ◽  
Vol 10 (11) ◽  
pp. 14229-14263 ◽  
Author(s):  
I.-Y. Yeo ◽  
S. Lee ◽  
A. M. Sadeghi ◽  
P. C. Beeson ◽  
W. D. Hively ◽  
...  

Abstract. Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implement of winter cover crop programs, in part by helping to target critical pollution source areas for winter cover crop implementation.


HortScience ◽  
1995 ◽  
Vol 30 (3) ◽  
pp. 429f-429
Author(s):  
S.C. Phatak ◽  
D.R. Sumner ◽  
R.B. Chalfant ◽  
J.D. Gay ◽  
L.D. Chandler ◽  
...  

Cover crops relay-cropped with vegetables with conservation tillage were compared with fallow conventional production for 10 years. Conservation till-relay received no pesticide and only one-quarter the recommended fertilizers. Winter cover provided significantly better weed control than conventional. Weed problems in relay occurred only in the rows where vegetables were planted. Legume winter covers increased soilborne organisms but did not influence root disease severity or postemergence damping-off. Thrips, aphids, and whiteflies were most frequent. These pests remained below the economic threshold with winter cover crop-relay. However, infestation of these pests and Colorado potato beetles was severe in conventional plots. Winter cover crops provided habitat for more than 14 beneficial insects.


HortScience ◽  
1996 ◽  
Vol 31 (5) ◽  
pp. 748e-748
Author(s):  
Dennis R. Decoteau ◽  
J.M. Davis ◽  
G.D. Hoyt ◽  
K.M. Batal ◽  
D.C. Sanders ◽  
...  

A 5-year study using winter cover crops (wheat or rye, crimson clover, and fallow) in a tomato and bean rotation indicated several soil responses to the cover crops. Advantages of crimson clover winter cover crop to the soil in a tomato-bean rotation included adding organic matter to the soil, which resulted in an increase in the amount of inorganic nitrogen in the upper levels of the soil profile and an increase in the soil's water-holding capacity. An additional benefit of winter cover crops to the soil was the potential of reduced nitrogen leaching.


2008 ◽  
Vol 61 ◽  
pp. 261-269
Author(s):  
M.G. Cromey ◽  
G.S. Francis ◽  
L.A. Trimmer ◽  
F.J. Tabley ◽  
R.N. Gillespie ◽  
...  

The effects of soil and residue management factors (tillage postharvest crop residue management and winter cover crops) and crop rotation (wheat following two barley crops wheat following ryegrass) on take all were compared in a 3year field trial in Canterbury Incidence of takeall was very high in plots that had previously grown barley and very low in plots that followed ryegrass Takeall incidence was also much greater in plots that were disced than in plots that were directdrilled Differences in soil pH and in plant emergence were also recorded between disced and directdrilled plots but there was no evidence that they caused the increased levels of takeall There was a tendency towards reduced yields in the disced plots that had severe levels of takeall


HortScience ◽  
2007 ◽  
Vol 42 (7) ◽  
pp. 1568-1574 ◽  
Author(s):  
E. Ryan Harrelson ◽  
Greg D. Hoyt ◽  
John L. Havlin ◽  
David W. Monks

Throughout the southeastern United States, vegetable growers have successfully cultivated pumpkins (Cucurbita pepo) using conventional tillage. No-till pumpkin production has not been pursued by many growers as a result of the lack of herbicides, no-till planting equipment, and knowledge in conservation tillage methods. All of these conservation production aids are now present for successful no-till vegetable production. The primary reasons to use no-till technologies for pumpkins include reduced erosion, improved soil moisture conservation, long-term improvement in soil chemical and microbial properties, and better fruit appearance while maintaining similar yields compared with conventionally produced pumpkins. Cover crop utilization varies in no-till production, whereas residue from different cover crops can affect yields. The objective of these experiments was to evaluate the influence of surface residue type on no-till pumpkin yield and fruit quality. Results from these experiments showed all cover crop residues produced acceptable no-till pumpkin yields and fruit size. Field location, weather conditions, soil type, and other factors probably affected pumpkin yields more than surface residue. Vegetable growers should expect to successfully grow no-till pumpkins using any of the winter cover crop residues tested over a wide range in residue biomass rates.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 461E-461
Author(s):  
H.J. Hruska ◽  
G.R. Cline ◽  
A.F. Silvernail ◽  
K. Kaul

Research began in 1999 to examine sustainable production of bell peppers (Capsicum annuum L.) using conservation tillage and legume winter cover crops. Tillage treatments included conventional tillage, strip-tillage, and no-tillage, and winter covers consisted of hairy vetch (Vicia villosa Roth), winter rye (Secale cereale L.), and a vetch/rye biculture. Pepper yields following the rye winter cover crop were significantly reduced if inorganic N fertilizer was not supplied. However, following vetch, yields of peppers receiving no additional N were similar to yields obtained in treatments receiving the recommended rate of inorganic N fertilizer. Thus, vetch supplied sufficient N to peppers in terms of yields. Pepper yields following the biculture cover crop were intermediate between those obtained following vetch and rye. When weeds were controlled manually, pepper yields following biculture cover crops were similar among the three tillage treatments, indicating that no-tillage and strip-tillage could be used successfully if weeds were controlled. With no-tillage, yields were reduced without weed control but the reduction was less if twice the amount of residual cover crop surface mulch was used. Without manual weed control, pepper yields obtained using strip-tillage were reduced regardless of metolachlor herbicide application. It was concluded that a vetch winter cover crop could satisfy N requirements of peppers and that effective chemical or mechanical weed control methods need to be developed in order to grow peppers successfully using no-tillage or strip-tillage.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 753 ◽  
Author(s):  
Sujan Dawadi ◽  
Fulya Baysal-Gurel ◽  
Karla M. Addesso ◽  
Jason B. Oliver ◽  
Terri Simmons

Soilborne pathogens are a significant economic problem for nursery production in the Southeastern United States. The goal of this study was to determine the impact of cover crops on soilborne disease suppressiveness in such systems. Soils from red maple (Acer rubrum L.) plantation fields grown with and without cover crops were sampled, either while the cover crops were growing (pre-disked) or post-season, following cover crop incorporation into the soil (post-disked). Greenhouse bioassays were conducted using red maple seeds on inoculated (with Rhizoctonia solani (J.G. Kühn) or Phytophthora nicotianae (Breda de Haan)) and non-inoculated field soils. The damping-off, root rot disease severity, percent recovery of Rhizoctonia and Phytophthora, and pseudomonad population were examined during the two years of the experiment. Results showed that cover crop incorporation was beneficial for inducing disease supressiveness characteristics of soil. Cover crop incorporation into the soil significantly or numerically reduced disease severity and pathogen recovery in infested soil compared to the bare soil treatment. Cover crop incorporation was found to be partially associated with the reduction of seedling damping-off. The pseudomonad microbial population was greater when cover crop was present, and is thought to be antagonist to soilborne pathogens. Therefore, cover crops can be integrated in field nursery production systems to suppress soilborne pathogens.


Author(s):  
Barbara Baraibar ◽  
David A. Mortensen ◽  
Mitchell C. Hunter ◽  
Mary E. Barbercheck ◽  
Jason P. Kaye ◽  
...  

2014 ◽  
Vol 30 (5) ◽  
pp. 473-485 ◽  
Author(s):  
Natalie P. Lounsbury ◽  
Ray R. Weil

AbstractOrganic no-till (NT) management strategies generally employ high-residue cover crops that act as weed-suppressing mulch. In temperate, humid regions such as the mid-Atlantic USA, high-residue winter cover crops can hinder early spring field work and immobilize nutrients for cash crops. This makes the integration of cover crops into rotations difficult for farmers, who traditionally rely on tillage to prepare seedbeds for early spring vegetables. Our objectives were to address two separate but related goals of reducing tillage and integrating winter cover crops into early spring vegetable rotations by investigating the feasibility of NT seeding spinach (Spinacia oleracea L.), an early spring vegetable, into winterkilled cover crops. We conducted a four site-year field study in the Piedmont and Coastal Plain regions of Maryland, USA, comparing seedbed conditions and spinach performance after forage radish (FR) (Raphanus sativus L.), a low-residue, winterkilled cover crop, spring oat (Avena sativa L.), the traditional winterkilled cover crop in the area, a mixture of radish and oat, and a no cover crop (NC) treatment. NT seeded spinach after FR had higher yields than all other cover crop and tillage treatments in one site year and was equal to the highest yielding treatments in two site years. Yield for NT spinach after FR was as high as 19 Mg ha−1 fresh weight, whereas the highest yield for spinach seeded into a rototilled seedbed after NC was 10 Mg ha−1. NT seeding spring spinach after a winterkilled radish cover crop is feasible and provides an alternative to both high-residue cover crops and spring tillage.


Sign in / Sign up

Export Citation Format

Share Document