scholarly journals The Improved Method for Determination of Orotic Acid in Milk by Ultra-Fast Liquid Chromatography with Optimized Photodiode Array Detection

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3196
Author(s):  
Marian Czauderna ◽  
Małgorzata Białek ◽  
Edyta Molik ◽  
Kamil Zaworski

Ultra-fast liquid chromatography (UFLC) with a photodiode array detector (DAD) for simple and rapid determination of orotic acid (OAc) in milk of sheep and cows is described. Milk samples are treated with acetonitrile (1:1, v/v) and then centrifuged at 4 °C. To 1 mL of the obtained supernatant 9 mL of ultrapure water was added. Subsequently, 0.5–6 µL of the resulting solution was injected into the UFLC-DAD system. Separation and quantification of OAc in milk samples was achieved using two Kinetex C18 columns (1.7 µm, 150 mm × 2.1 mm, i.d., 100 Å; Phenomenex) fitted with a pre-column of 4 mm × 2 mm, i.d. (Phenomenex) containing C18 packing material. All separations were performed at a column temperature of 35 °C while the ambient temperature was 21–24 °C. Satisfactory separation of OAc from endogenous species of milk can be achieved using the binary gradient elution program and UV detection at wavelengths 278 nm. Our original procedure resulted in suitable separation and quantification of OAc in milk samples; OAc eluted at 6.44 ± 0.03 min. The total run time of OAc analysis (including re-equilibration) was 27 min. As expected, the OAc peak was absent from the blank when the proposed gradient elution program and UV detection at 278 nm was used. The average recoveries of OAc standards added to milk samples were satisfactory (96.7–105.3%). The low inter-and intra-assay coefficient of variation derived from the measurements of OAc in cow and ovine milk samples (i.e., 0.784%, 1.283% and 0.710%, 1.221%, respectively) and in O-Ac standards (i.e., 0.377% and 0.294%, respectively), as well as high recoveries of OAc added to ovine and cows’ milk (~100%) and the low detection (0.04 ng) and quantification (0.12 ng) limits point to satisfactory accuracy, precision and sensitivity of the reported method. OAc concentrations in ovine milk samples were within the range from 25 to 36 mg/L, while OAc levels in cows’ milk samples was found in the range of 32–36 mg/L. Our original procedure is suitable for routine quantification of OAc in milk of ewes and cows.

Author(s):  
TANTI ◽  
CHRISTIEN ANDRIYANI LALANGI ◽  
ERI ARFIYANI ◽  
WIDIANTI NINGTIAS ◽  
ERLANA NINDYA MAULIDA

Objective: This study details the determination of mitragynine in various kratom samples using the thin-layer chromatography (TLC) technique and validation of analytical methods for quantifying the concentration of mitragynine in various kratom samples using liquid chromatography with photodiode array detector (LC-PDA). Methods: TLC technique using n-hexane: ethyl acetate: ammonia 25% (30: 15: 1 v/v/v) was applied to isolate mitragynine from kratom samples. Several interesting spots obtained were visualized under UV light at 254 nm. Samples were also prepared with organic solvent extraction directly prior to LC analysis (non-isolation method of preparation) to quantify the concentration of mitragynine. Mobile phases used were acetonitrile (MP A) and 0.1% formic acid in water (MP B). Samples and standards were run by gradient elution with a flow rate of 0.3 ml/min, detection using PDA detector at 254 nm. Results: Mitragynine was successfully isolated from kratom samples in Rf 0.50 by TLC system applied. The validation of analytical methods for mitragynine passed the acceptance criteria as described by UNODC Guidance. The concentration of mitragynine in various kratom samples seized in Indonesia ranged from 0.37%-1.70% (%w/w). Conclusion: Both TLC and LC analytical methods could be applied to determine and quantify the concentration of mitragynine in each examined sample, respectively.


Author(s):  
Y.T. Kamal ◽  
Sayeed Ahmad ◽  
Nanjaian Mahadevan ◽  
Prawez Alam ◽  
Shahana Salam ◽  
...  

AbstractA new High Performance Liquid Chromatography–Photodiode Array Detector (HPLC–PDA) method has been developed for the chromatographic separation and simultaneous quantitative determination of nine bioactive compounds, i.e. four phenolic (gallic acid, ellagic acid, chebulinic acid, and tannic acid), two flavanoids (rutin and quercetin), two anthraquinones (sennoside A and B) and one oxygenated hydrocarbon (vitamin C) in a well-known Unani polyherbal formulation namely Itrifal's. Separation was accomplished on a C18 LiChrospher 100 column (5 µm, 250 × 4.6 mm) with a gradient elution and recorded at 254 nm. The results demonstrated that the proposed method is reproducible, accurate, economic, and suitable for the quality control of traditional polyherbal Unani formulations containing complex compounds with different structures such as Itrifals.


2019 ◽  
Vol 15 (2) ◽  
pp. 130-137
Author(s):  
Hui Jiang ◽  
Lianhao Fu ◽  
Yu Wang ◽  
Shaozhi Wang ◽  
Xiaoxu Zhang ◽  
...  

Background: Jingzhiguanxin (JZGX) tablet, a traditional Chinese prescription, is commonly used for treating coronary heart disease and angina pectoris in the clinic. There are six active components (Danshensu (DSS), Protocatechuic aldehyde (PD), Paeoniflorin (PF), Ferulic acid (FA), Salvianolic acid B (Sal B) and Tanshinone IIA (TA)) in JZGX tablet. </P><P> Objective: In this paper, a simple and reliable method was used for simultaneous determining the six active components by high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). Methods: These six active components were separated on an Agilent Zorbax Eclipse XDB-C18 column (150 mmx4.6 mm, 5 µm) at 30 °C. Acetonitrile (A), methanol (B) and 0.5% H3PO4 aqueous solution (C) were used as mobile phase for gradient elution. The flow rate was 1 mL/min and the detection wavelengths were set at 280 nm for DSS, PD and Sal B, 230 nm for PF, 320 nm for FA and 270 nm for TA, respectively. Results: All of the six components showed good linearity regressions (r2≥0.9997) in the detected concentration range. The recovery rates and coefficient of variation (CV) for all analytes were 98.66%- 100.18% and 0.75%-1.89%, respectively. This method was successfully applied to simultaneously determine the six components in JZGX tablet from different batches and manufacturers. Conclusion: The validated method can be used in routine quality control analysis of JZGX tablet without any interference.


2018 ◽  
Vol 13 (11) ◽  
pp. 1934578X1801301
Author(s):  
Chang-Seob Seo ◽  
Hyeun-Kyoo Shin

The root bark of Morus alba L. (Family: Moraceae) is an important medicinal herb in many countries and has long been used as a traditional medicine for the treatment of cough, fever, blood pressure reduction, and respiratory diseases. In the present study, the simultaneous determination of two flavonoids, kuwanon G and morusin, for quality control of M alba was conducted using high-performance liquid chromatography (HPLC) equipped with photodiode array (PDA) detector. The column used for separation of kuwanon G and morusin was a Gemini C18 analytical column maintained at 45°C. The mobile phase for efficient separation of two analytes was flowed 0.1% (v/v) aqueous formic acid-acetonitrile with gradient elution. The detection wavelength for quantification was set at 266 nm. The optimized method showed good linearity with coefficients of determination of 0.9998 within the tested concentration ranges. The limits of detection for the two flavonoids, kuwanon G and morusin, were 0.69 μg/mL and 0.35 μg/mL and the limits of quantification of kuwanon G and morusin, were 2.10 μ/mL and 1.07 μg/mL. The recoveries were 98.40–111.55% and the relative standard deviation (RSD) value was within 3.50%. The RSD values of intra- a g d interday precisions were 0.08–0.70% and 0.06-0.48%, respectively. The amounts of kuwanon G and morusin were 1.94-2.26 mg/g and 1.05–1.12 mg/g. The established HPLC-PDA method will help to improve the quality control of M. alba and related products.


Sign in / Sign up

Export Citation Format

Share Document