electrospray tandem mass spectrometry
Recently Published Documents


TOTAL DOCUMENTS

826
(FIVE YEARS 22)

H-INDEX

78
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Li Zhao ◽  
Hong Chang ◽  
Fuhong Sun ◽  
Hailei Su

We developed a sensitive method for monitoring six natural (aldosterone) and synthetic mineralocorticoids (canrenone, spironolactone, 7β-spironolactone, 7α-thio spironolactone, and 7α-thiomethyl spironolactone) in sediment and water using ultra-performance liquid chromatography–electrospray tandem mass spectrometry, and then 30 water and 30 sediment samples were analyzed to reveal their occurrence and distributions in Taihu Lake. All target six mineralocorticoids were detected in sediment and water samples with the detection frequencies as high as 96–100%. The median concentrations of mineralocorticoids ranged from 0.04 ng/L (7α-thiomethyl spironolactone) to 14 ng/L (aldosterone) in water and 0.01 ng/g (7β-spironolactone and canrenone) to 1.44 ng/g (aldosterone) in sediment in dry weight. Natural aldosterone was the predominant mineralocorticoid detected in both water and sediment samples, indicating the mineralocorticoid pollution in Taihu Lake was mainly derived from human and/or animal excrement rather than pharmaceutical industry and usage. Two metabolites 7β-spironolactone and 7α-thio spironolactone were first found in this study. Low ratios of metabolites to spironolactone were observed in sediment (0.05–0.75) in contrast to water (0.12–2.26), indicating that spironolactone was prone to degradation in water phase compared to sediment environment.


2021 ◽  
Vol 01 ◽  
Author(s):  
Khadija Daoudi ◽  
Christian Malosse ◽  
Bouchra Darkaoui ◽  
Salma Chakir ◽  
Fatima Chgoury ◽  
...  

Background: Androctonus mauretanicus (Am) is one of the most hazardous scorpions in Morocco and has a highly toxic venom responsible for severe cases of envenomation. However, few studies have focused on decifering its proteic composition. Objectives: Herein, we aim to map out the complete proteome of the Am venom in order to highlight its complexity and the polymorphism of its toxic content. This, in turn, will lead to a deeper understanding of the toxins’ mechanism of action and will help uncover those with therapeutic potential. Methods: Top-down and bottom-up proteomic approaches were used complementarily to decipher the proteome of the Am venom. These approaches were carried out on nano-high liquid chromatography coupled to nano-electrospray tandem mass spectrometry (Nano-LC-ESI-MS/MS). Results: Am venom encloses a complex mixture of 269 different compounds with molecular weights ranging from 1618.74 to 14 214.84 Da. The most abundant ones showed masses from 6185.92 to 7899.53 Da (53.89%) followed by those ranging from 2079.25 to 5969.63 Da (37.81%). Interestingly, the combination of the results of both approaches allowed the screening of a total of 112 peptides. The highest percentage was represented by neuropeptides (87%), including NaTxs, KTxs, ClTxs, venom proteins, venom neuropeptides, and myotropic neuropeptides. Moreover, other peptides were identified, such as antimicrobial peptides, amphipathic peptides, cysteine-rich venom peptides, enzymes, kunitz-type inhibitor and orphan peptides. Conclusion: The Am venom appears to contain a great amount of diverse peptides, some of which could prospectively be exploited for their pharmaceutical potential.


Author(s):  
Rebecca A Mastrovito ◽  
Donna M Papsun ◽  
Barry K Logan

Abstract Novel illicit benzodiazepines are among the most active areas of new illicit drug manufacture and use. We describe a method for the detection and quantification of etizolam and its metabolite α-hydroxyetizolam, flubromazolam, clonazolam, diclazepam, delorazepam, bromazepam, flubromazepam, phenazepam, flualprazolam, flunitrazolam, and nitrazolam in human whole blood. After addition of internal standards, samples are buffered and extracted using a liquid–liquid extraction. Analysis is performed using positive-ion electrospray tandem mass spectrometry for detection and quantitation. Calibration ranges were established based on the method performance and differed from compound to compound. Replicates at the lowest calibration point for each compound performed within 5% of CV (Coefficient of Variation). The correlation coefficient was >0.990 for all compounds. Relative standard deviation for all compounds was ≤10% of CV and accuracy was  ±10% for both within- and between-run experiments. The maximum average intra- and inter-run imprecision were 5.7%. The maximum average intra- and inter-run imprecision was −8.7%. As part of evaluating the scope for relevancy, samples testing positive in immunoassay but confirmed to be negative in traditional benzodiazepine confirmation method were re-analyzed using this method. The presence of at least one novel benzodiazepine was identified in 70% of these samples. The appearance of these novel “designer” benzodiazepines demonstrates the challenge for toxicology testing and the need for continually updated confirmation methods.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xinqiao Zhan ◽  
Jufeng Qi ◽  
Bin Zhou ◽  
Bizeng Mao

Abstract We performed an integrated analysis of the transcriptome and metabolome from purple (Pr) and normal cultivated varieties (CK) of Dendrobium officinale to gain insights into the regulatory networks associated with phenylpropanoid metabolism and to identify the key regulatory genes of pigmentation. Metabolite and transcript profiling were conducted by ultra-performance liquid chromatography electrospray tandem mass spectrometry (UPLC-ESI-MS/MS) and RNA sequencing. Pr had more flavonoids in the stem than did CK. Metabolome analyses showed that 148 differential metabolites are involved in the biosynthesis of phenylpropanoids, amino acids, purines, and organic acids. Among them, the delphinidin and quercetin derivatives were significantly higher in Pr. A total of 4927 differentially expressed genes (DEGs) were significantly enriched (p ≤ 0.01) in 50 Gene Ontology (GO) terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed significantly enriched phenylpropanoid biosynthesis and phytohormone signal transduction in Pr versus CK. The expression levels of flavanone 3-hydroxylase (F3H) and leucoanthocyanidin dioxygenase (LDOX) affected the flux of dihydroflavonol, which led to a color change in Pr. Moreover, DEG enrichment and metabolite analyses reflected flavonoid accumulation in Pr related to brassinosteroid (BR) and auxin metabolism. The results of this study elucidate phenylpropanoid biosynthesis in D. officinale.


Metabolites ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 327
Author(s):  
Yvonne M. Forster ◽  
Silvan Reusser ◽  
Florian Forster ◽  
Stefan Bienz ◽  
Laurent Bigler

Spider venoms are highly complex mixtures. Numerous spider venom metabolites are uniquely found in spider venoms and are of interest concerning their potential use in pharmacology, agriculture, and cosmetics. A nontargeted ultra-high performance high-resolution electrospray tandem mass spectrometry (UHPLC-HR-ESI-MS/MS) approach offers a resource-saving way for the analysis of crude spider venom. However, the identification of known as well as the structure elucidation of unknown low molecular mass spider venom compounds based on their MS/MS spectra is challenging because (1) acylpolyamine toxins are exclusively found in spider and wasp venom, (2) reference MS/MS spectra are missing in established mass spectrometry databases, and (3) trivial names for the various toxin metabolites are used in an inconsistent way in literature. Therefore, we introduce the freely accessible MS website for low molecular mass spider venom metabolites, venoMS, containing structural information, MS/MS spectra, and links to related literature. Currently the database contains the structures of 409 acylpolyamine toxins, 36 free linear polyamines, and 81 additional spider venom metabolites. Implemented into this website is a fragment ion calculator (FRIOC) that allows us to predict fragment ions of linear polyamine derivatives. With three metabolites from the venom of the spider Agelenopsis aperta, it was demonstrated how the new website can support the structural elucidation of acylpolyamines using their MS/MS spectra.


2020 ◽  
Vol 64 (4) ◽  
pp. 421-429
Author(s):  
Anna Somogyi ◽  
Mária Berinkeiné Donkó ◽  
Farkas Sarnyai ◽  
Gergely Becskereki ◽  
Miklós Csala ◽  
...  

A sensitive, reproducible reverse-phased high performance liquid chromatography electrospray tandem mass spectrometry (HPLC-ESI-MS/MS) method with simple sample preparation was developed for the simultaneous determination of a wide range of ceramides, diacylglycerols (DAGs) in cultured cells. Chromatographic separation of the compounds was achieved in a 14-minute run using a C8 column with a gradient elution by methanol and 10 mM ammonium acetate buffer as mobile phase at a flow rate of 0.5 ml/min. Various ceramides, DAGs were detected with a triple quadrupol system in multiple reaction monitoring mode, which is based on a soft positive electrospray ionization. The usual sample preparation process was shortened by the application of pure methanol for the extraction instead of the widely used methanol/chloroform mixture. C17:0 ceramide which does not occur in the cell samples, was used as an internal standard. The sample preparation process was optimized and the methodology was tested on a human hepatocarcinoma cell culture. Our results clearly showed accumulation of some ceramides and DAGs in the cells treated with BSA-conjugated palmitate for 8 hours. Since both ceramides and DAGs are important lipid intermediates and signal messengers, alteration in their cellular levels have major impact on cell functions, and thus our novel analytic method can be widely used in lipotoxicity research. The presented technique can be further developed to measure other intermediates of ceramide synthesis and other derivatives of DAGs as well.


Sign in / Sign up

Export Citation Format

Share Document