scholarly journals A Novel mRNA-Mediated and MicroRNA-Guided Approach to Specifically Eradicate Drug-Resistant Hepatocellular Carcinoma Cell Lines by Se-Methylselenocysteine

Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1094
Author(s):  
Arun Kumar Selvam ◽  
Rim Jawad ◽  
Roberto Gramignoli ◽  
Adnane Achour ◽  
Hugh Salter ◽  
...  

Despite progress in the treatment of non-visceral malignancies, the prognosis remains poor for malignancies of visceral organs and novel therapeutic approaches are urgently required. We evaluated a novel therapeutic regimen based on treatment with Se-methylselenocysteine (MSC) and concomitant tumor-specific induction of Kynurenine aminotransferase 1 (KYAT1) in hepatocellular carcinoma (HCC) cell lines, using either vector-based and/or lipid nanoparticle-mediated delivery of mRNA. Supplementation of MSC in KYAT1 overexpressed cells resulted in significantly increased cytotoxicity, due to ROS formation, as compared to MSC alone. Furthermore, microRNA antisense-targeted sites for miR122, known to be widely expressed in normal hepatocytes while downregulated in hepatocellular carcinoma, were added to specifically limit cytotoxicity in HCC cells, thereby limiting the off-target effects. KYAT1 expression was significantly reduced in cells with high levels of miR122 supporting the concept of miR-guided induction of tumor-specific cytotoxicity. The addition of alpha-ketoacid favored the production of methylselenol, enhancing the cytotoxic efficacy of MSC in HCC cells, with no effects on primary human hepatocytes. Altogether, the proposed regimen offers great potential to safely and specifically target hepatic tumors that are currently untreatable.

2021 ◽  
Author(s):  
Arun Kumar Selvam ◽  
Rim Jawad ◽  
Roberto Gramignoli ◽  
Adnane Achour ◽  
Hugh Salter ◽  
...  

AbstractDespite progress in the treatment of non-visceral malignancies, the prognosis remains poor for malignancies of visceral organs and novel therapeutic approaches are urgently required. Here we introduce a novel therapeutic regimen by treatment with Se-methylselenocysteine (MSC) and concomitant tumor-specific induction of Kynurenine aminotransferase 1 (KYAT1) in hepatocellular carcinoma (HCC) cell lines, using either vector-based and/or lipid nanoparticle-mediated delivery of mRNA. Supplementation of MSC in KYAT1 overexpressed cells resulted in significantly increased cytotoxicity as compared to MSC alone. Furthermore, microRNA antisense targeted sites for miR122, known to be widely expressed in normal hepatocytes whilst downregulated in hepatocellular carcinoma, were added to specifically limit cytotoxicity in HCC cells, thereby limiting off-target effects. KYAT1 expression was significantly reduced in cells with high levels of miR122 supporting the concept of miR-guided induction of tumor-specific cytotoxicity. The addition of alpha-ketoacid favored the production of methylselenol, enhancing the cytotoxic efficacy of MSC in HCC cells, with no effects on primary human hepatocytes. Altogether, the proposed regimen offers great potential to safely and specifically target hepatic tumors that are currently untreatable.


Author(s):  
Federico Giulitti ◽  
Simonetta Petrungaro ◽  
Sara Mandatori ◽  
Luana Tomaipitinca ◽  
Valerio de Franchis ◽  
...  

Oleic acid (OA) is a component of the olive oil. Beneficial health effects of olive oil are well-known, such as protection against liver steatosis and against some cancer types. In the present study, we focused on OA effects in hepatocellular carcinoma (HCC), investigating responses to OA treatment (50–300 μM) in HCC cell lines (Hep3B and Huh7.5) and in a healthy liver-derived human cell line (THLE-2). Upon OA administration higher lipid accumulation, perilipin-2 increase, and autophagy reduction were observed in HCC cells as compared to healthy cells. OA in the presence of 10% FBS significantly reduced viability of HCC cell lines at 300 μM through Alamar Blue staining evaluation, and reduced cyclin D1 expression in a dose-dependent manner while it was ineffective on healthy hepatocytes. Furthermore, OA increased cell death by about 30%, inducing apoptosis and necrosis in HCC cells but not in healthy hepatocytes at 300 μM dosage. Moreover, OA induced senescence in Hep3B, reduced P-ERK in both HCC cell lines and significantly inhibited the antiapoptotic proteins c-Flip and Bcl-2 in HCC cells but not in healthy hepatocytes. All these results led us to conclude that different cell death processes occur in these two HCC cell lines upon OA treatment. Furthermore, 300 μM OA significantly reduced the migration and invasion of both HCC cell lines, while it has no effects on healthy cells. Finally, we investigated autophagy role in OA-dependent effects by using the autophagy inducer torin-1. Combined OA/torin-1 treatment reduced lipid accumulation and cell death as compared to single OA treatment. We therefore concluded that OA effects in HCC cells lines are, at least, in part dependent on OA-induced autophagy reduction. In conclusion, we report for the first time an autophagy dependent relevant anti-cancer effect of OA in human hepatocellular carcinoma cell lines.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiantao Wang ◽  
Jinbiao Che

Abstract Background Hepatocellular carcinoma (HCC) is the leading cause of tumor-related death worldwide due to high morbidity and mortality, yet lacking effective biomarkers and therapies. Circular RNAs (circRNAs) are a group of non-coding RNAs that regulate gene expression through interacting with miRNAs, implicating in the tumorigenesis and progression. A novel circRNA, circTP63, was reported to be an oncogene in HCC. However, its role in HCC remains unclear. Methods qRT-PCR was used to assess the mRNA levels of CircTP63 in 90 pairs of tumor and adjacent normal tissues from HCC patients, one human normal hepatic epithelial cell line and HCC cell lines. CCK-8, colony formation, transwell, and flow cytometry assays were performed to detect the cellular function of circTP63/miR-155-5p/ZBTB18 in HCC cells. HCC xenograft mice models were established to assess the in vivo effect of circTP63. Bioinformatic analysis, RNA pull-down and luciferase assays were used to determine the interaction among circTP63/miR-155-5p/ZBTB18. Results circTP63 was significantly upregulated in HCC tissues and cell lines. High circTP63 expression is closely associated with the tumor stages, lymph node metastasis, and poor prognosis of HCC patients. Functionally, knockdown of circTP63 inhibited cell proliferation, migration, invasion, and promoted cell apoptosis of HCC. Meanwhile, overexpression of circTP63 enhanced HCC progression. Mechanically, circTP63 was a sponge of miR-155-5p to facilitate the ZBTB18 expression, and the ZBTB18 expression in HCC tissues was negatively associated with the survival rate of HCC patients. Furthermore, rescued assays revealed that the reduced tumor-promoting effect on HCC cells induced by knockdown of circTP63 can be reversed by miR-155-5p inhibitor or ZBTB18 overexpression. Conclusion Our data highlight a critical circTP63-miR-155-5p-ZBTB18 regulatory network involved in the HCC progression, gaining mechanistic insights into the function of circRNAs in HCC progression, and providing effective biomarkers and therapeutic targets for HCC treatment.


2021 ◽  
Vol 20 ◽  
pp. 153303382110279
Author(s):  
SiZhe Yu ◽  
Yu Wang ◽  
KeJia Lv ◽  
Jia Hou ◽  
WenYuan Li ◽  
...  

Purpose: The high fatality-to-case ratio of hepatocellular carcinoma is directly related to metastasis. The signal transducer and activator of transcription-3 is a key mediator of the cytokine and growth factor signaling pathways and drives the transcription of genes responsible for cancer-associated phenotypes. However, so far, no specific inhibitor for signal transducer and activator of transcription-3 has been used in clinical practice. Therefore, targeting the signal transducer and activator of transcription-3 for cancer therapy is highly desired to improve outcomes in patients with hepatocellular carcinoma. Experimental Design: Using the small-molecule inhibitor NT157, the effect of signal transducer and activator of transcription-3 inhibition on cell migration was tested in hepatocellular carcinoma cell lines and a lung metastasis model of the disease. Results: NT157 significantly inhibited the migration of hepatocellular carcinoma cell lines in vitro and lung metastasis of hepatocellular carcinoma in vivo. Mechanistically, it inhibited the phospho-signal transducer and activator of transcription-3 in a dose- and time-dependent manner. Furthermore, NT157 treatment suppressed the c-Jun activation domain-binding protein-1 levels in the nucleus but no significant decrease was observed in its expression in the cytoplasm. Finally, high mRNA expression levels of signal transducer and activator of transcription-3 and c-Jun activation domain-binding protein-1 in hepatocellular carcinoma were associated with significantly low survival rates. Conclusion: NT157 inhibits hepatocellular carcinoma migration and metastasis by downregulating the signal transducer and activator of transcription-3/c-Jun activation domain-binding protein-1 signaling pathway and targeting it may serve as a novel therapeutic strategy for the clinical management of hepatocellular carcinoma in the future.


Sign in / Sign up

Export Citation Format

Share Document