scholarly journals Evaluation of Redox Profiles of the Serum and Aqueous Humor in Patients with Primary Open-Angle Glaucoma and Exfoliation Glaucoma

Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1305
Author(s):  
Yuji Takayanagi ◽  
Yasuyuki Takai ◽  
Sachiko Kaidzu ◽  
Masaki Tanito

Oxidative stress is thought to play a significant role in the development of glaucoma. However, the association between systemic and local oxidative stresses in different types of glaucoma has not been assessed fully. The current study compared the redox status in the aqueous humor (AH) and blood samples among eyes with primary open-angle glaucoma (POAG), exfoliation glaucoma (EXG), and non-glaucomatous controls to evaluate the relationship among systemic redox status, intraocular oxidative stress, and clinical backgrounds. AH and blood samples were obtained from 45 eyes of 45 Japanese subjects (15 POAG, 15 EXG, and 15 control eyes). The serum levels of lipid peroxides, ferric-reducing activity, and thiol antioxidant activity were measured by diacron reactive oxygen metabolites (dROM), biologic antioxidant potential (BAP), and sulfhydryl (SH) tests, respectively, using a free radical analyzer. The activities of cytosolic and mitochondrial forms of the superoxide dismutase (SOD) isoforms, i.e., SOD1 and SOD2, respectively, in AH and serum were measured using a multiplex bead immunoassay. In AH, SOD1 in subjects with EXG and SOD2 in those with POAG and EXG were significantly higher than in control eyes. In serum, compared to control subjects, BAP in subjects with POAG and EXG was significantly lower; SOD1 in those with EXG and SOD2 in those with POAG and EXG were significantly higher. dROM and SH did not differ significantly among the groups. The BAP values were correlated negatively with the SOD1 concentrations in AH and serum, SOD2 in the AH, intraocular pressure, and number of antiglaucoma medications. In conclusion, lower systemic antioxidant capacity accompanies up-regulation of higher local antioxidant enzymes, suggesting increased oxidative stress in eyes with OAG, especially in EXG. Determination of the systemic BAP values may help predict the redox status in AH.

Life ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 364
Author(s):  
Yuji Takayanagi ◽  
Yasuyuki Takai ◽  
Sachiko Kaidzu ◽  
Masaki Tanito

The retinal vessel narrowing may be implicated in the pathogenesis of glaucoma; however, the association between systemic oxidative stress and retinal vessel diameter remains largely unknown. We examined the relationship between serum oxidative stress markers and retinal vessel diameters in eyes with primary open-angle glaucoma (POAG) and cataract, using central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE). We included 66 eyes of 66 patients with POAG (37 men, 29 women; 65.4 ± 11.7 years) and 20 eyes of 20 patients with cataract (7 men, 13 women; 69.4 ± 9.0 years) as the controls. The CRAE (p < 0.0001), CRVE (p < 0.0001), and serum biological antioxidant potential (BAP) (p = 0.0419) were significantly lower in the POAG group compared to the controls. The BAP showed significant correlation both with CRAE (ρ = 0.2148, p = 0.0471) and systolic blood pressure (ρ = −0.2431, p = 0.0241), while neither Diacron reactive oxygen metabolites nor sulfhydryl test correlated with them. The multivariate analyses indicated that age, best corrected visual acuity, and BAP were independent factors for CRAE or CRVE. The present study suggested that lower systemic antioxidant capacity was significantly associated with the intraocular pressure-independent vascular narrowing in POAG patients. This study provided a novel insight into the pathophysiology of glaucoma and highlighted the clinical impact on systemic antioxidant treatment for patients with glaucoma.


2012 ◽  
Vol 103 ◽  
pp. 55-62 ◽  
Author(s):  
A. Bagnis ◽  
A. Izzotti ◽  
M. Centofanti ◽  
S.C. Saccà

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Binghua Tang ◽  
Shengjie Li ◽  
Wenjun Cao ◽  
Xinghuai Sun

Purpose. To systematically evaluate the associations between oxidative stress status and different types of glaucoma. Design. Systematic review and meta-analysis. Methods. We searched PubMed, EMBASE, and the Web of Science for randomized controlled trials written in the English language between January 1, 1990, and November 30, 2016. A random effects model was used to estimate oxidative stress status along with weighted mean differences and 95% confidence intervals (CIs). A funnel plot analysis and Egger’s test were performed to assess potential publication bias. Main outcome measures. Oxidative stress status was abnormal and different in patients with OAG (open-angle glaucoma) and EXG (exfoliation glaucoma). Results. Blood TAS (total antioxidant status) was lower in the OAG group than in the control group, with a mean difference of 0.580 mmol/L (p<0.0001, 95% CI = −0.668 to −0.492). The aqueous humor SOD (superoxide dismutase), GPX (glutathione peroxidase), and CAT (catalase) levels were higher in the OAG group than in the control group, with mean differences of 17.989 U/mL (p<0.0001, 95% CI = 14.579–21.298), 12.441 U/mL (p<0.0001, 95% CI = 10.423–14.459), and 1.229 fmol/mL (p=0.042, 95% CI = 0.043–2.414), respectively. Blood TAS was lower in the EXG group than in the control group, with a mean difference of 0.262 mmol/L (p<0.0001, 95% CI = −0.393 to −0.132). However, there were no differences in blood TOS and aqueous humor TOS between the EXG group and the control group. Conclusions. This meta-analysis indicates that OAG patients had a lower TAS in the blood and higher levels of SOD, GPX, and CAT in the aqueous humor, while EXG patients only had a decreased TAS in the blood.


2018 ◽  
Vol 27 (7) ◽  
pp. 1263-1275 ◽  
Author(s):  
Michelle D Drewry ◽  
Pratap Challa ◽  
John G Kuchtey ◽  
Iris Navarro ◽  
Inas Helwa ◽  
...  

1990 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
In Seop Lee ◽  
Young Suk Yu ◽  
Dong Myung Kim ◽  
Dong Ho Youn ◽  
Jin Q Kim

2021 ◽  
Vol 22 (5) ◽  
pp. 2421
Author(s):  
Saray Tabak ◽  
Sofia Schreiber-Avissar ◽  
Elie Beit-Yannai

Reactive oxygen species (ROS) plays a key role in the pathogenesis of primary open-angle glaucoma (POAG), a chronic neurodegenerative disease that damages the trabecular meshwork (TM) cells, inducing apoptosis of the retinal ganglion cells (RGC), deteriorating the optic nerve head, and leading to blindness. Aqueous humor (AH) outflow resistance and intraocular pressure (IOP) elevation contribute to disease progression. Nevertheless, despite the existence of pharmacological and surgical treatments, there is room for the development of additional treatment approaches. The following review is aimed at investigating the role of different microRNAs (miRNAs) in the expression of genes and proteins involved in the regulation of inflammatory and degenerative processes, focusing on the delicate balance of synthesis and deposition of extracellular matrix (ECM) regulated by chronic oxidative stress in POAG related tissues. The neutralizing activity of a couple of miRNAs was described, suggesting effective downregulation of pro-inflammatory and pro-fibrotic signaling pathways, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), transforming growth factor-beta 2 (TGF-β2), Wnt/β-Catenin, and PI3K/AKT. In addition, with regards to the elevated IOP in many POAG patients due to increased outflow resistance, Collagen type I degradation was stimulated by some miRNAs and prevented ECM deposition in TM cells. Mitochondrial dysfunction as a consequence of oxidative stress was suppressed following exposure to different miRNAs. In contrast, increased oxidative damage by inhibiting the mTOR signaling pathway was described as part of the action of selected miRNAs. Summarizing, specific miRNAs may be promising therapeutic targets for lowering or preventing oxidative stress injury in POAG patients.


Sign in / Sign up

Export Citation Format

Share Document