scholarly journals Numerical Investigation of Strength Mismatch Effect on Ductile Crack Growth Resistance in Welding Pipe

2020 ◽  
Vol 10 (4) ◽  
pp. 1374
Author(s):  
Lin Su ◽  
Jie Xu ◽  
Wei Song ◽  
Lingyu Chu ◽  
Hanlin Gao ◽  
...  

The effect of strength mismatch (ratio between the yield stress of weld metal and base metal, My) on the ductile crack growth resistance of welding pipe was numerically analyzed. The ductile fracture behavior of welding pipe was determined while using the single edge notched bending (SENB) and single edge notched tension (SENT) specimens, as well as axisymmetric models of circumferentially cracked pipes for comparison. Crack growth resistance curves (as denoted by crack tip opening displacement-resistance (CTOD-R curve) have been computed using the complete Gurson model. A so-called CTOD-Q-M formulation was proposed to calculate the weld mismatch constraint M. It has been shown that the fracture resistance curves significantly increase with the increase of the mismatch ratio. As for SENT and pipe, the larger My causes the lower mismatch constraint M, which leads to the higher fracture toughness and crack growth resistance curves. When compared with the standard SENB, the SENT specimen and the cracked pipe have a more similar fracture resistance behavior. The results present grounds for justification of usage of SENT specimens in fracture assessment of welding cracked pipes as an alternative to the traditional conservative SENB specimens.

2016 ◽  
Vol 850 ◽  
pp. 403-408
Author(s):  
Xiao Min Zhuo ◽  
Jie Xu ◽  
Peng Peng Li ◽  
Yu Fan ◽  
Zhi Sun

In this study, the effects of residual stresses on the ductile crack growth resistance was investigated using single-edge-notched bending (SENB) and single-edge-notched tension (SENT) specimens as well as axisymmetric model. Weld residual stresses were introduced by the so-called eigenstrain method. The crack tip opening displacement (CTOD) and constraint parameter R were calculated for different specimens and residual stresses. Results show that the residual stresses slightly reduced the ductile crack growth resistance. However, crack tip constraint R elevated with the increase of residual stress.


Author(s):  
Jie Xu ◽  
Zhiliang Zhang ◽  
Erling O̸stby ◽  
Ba˚rd Nyhus ◽  
Dongbai Sun

Ductile crack growth plays an important role in the analysis of the fracture behavior of structures. Crack-like defects in pipe systems often develop during fabrication or in-service operation. The standard single edge notched bending (SENB) specimen with crack depth of a/W = 0.5 has a significantly higher geometry constraint than actual pipes with circumferential surface cracks, which therefore introduces a high degree of conservatism in engineering critical assessment (ECA) of pipes. Moreover, it is difficult to know how conservative the results are, because the geometry constraint is highly material-dependent. For circumferential surface flaws in pipes, the single edge notched tension (SENT) specimen has frequently been used because it has a geometry constraint in front of the crack tip that is similar to the cracks in pipes. Much work has been carried out on tensile testing for the SENT specimen as an alternative fracture mechanics specimen of pipes. In studying fully circumferential cracks in pipes, the crack geometry, applied load and boundary conditions are symmetrical about the axis of revolution. A typical radial plane containing the axis of rotational symmetry can represent these axisymmetric bodies; therefore the three-dimensional analysis can be reduced to a two-dimensional problem. This work systemically applies 2D axisymmetric models to study the ductile crack growth behavior of pipes with fully internal and external circumferential cracks under large scale yielding conditions. The complete Gurson model (CGM) developed and implemented by Zhang was utilized to predict the ductile crack growth resistance curves. Pipes with various internal pressure, diameter-to-thickness ratios, crack depths and material properties, as denoted by hardening and initial void volume fraction, have been analyzed. The results have been compared with those of corresponding clamped-loaded SENT (with same crack depth) and standard SENB specimens. It clearly indicates that the SENT specimen is a good representation of circumferentially flawed pipes and an alternative to the conventional standard SENB specimen for the fracture mechanics testing in ECA of pipes.


Author(s):  
Bin Qiang ◽  
Xin Wang

Abstract The finite element method (FEM) based on the Gurson–Tvergaard–Needleman (GTN) model was used to investigate the ductile crack growth behavior at different weld joint locations in X80 pipeline steel. The X80 weld joints are inhomogeneous and can be divided into five different zones. By fitting the results of uniaxial tension and single-edge notched bending tests, the GTN model parameters were determined using FEM in consideration of the inhomogeneity of the weld joint. The calibrated GTN model was then used to analyze the fracture toughness in single-edge notched tension tests. The results show that the different weld joint zones produce different mechanical properties and crack growth resistance curves. To accurately assess the integrity of X80 weld joints, the calibrated GTN model is a reasonable method for obtaining fracture toughness data and resistance curves for different joint locations under different loading conditions.


Author(s):  
Takehisa Yamada ◽  
Mitsuru Ohata

Abstract The aim of this study is to propose damage model on the basis of the mechanism for ductile fracture related to void growth and to confirm the applicability of the proposed model to ductile crack growth simulation for steel. To figure out void growth behavior, elasto-plastic finite element analyses using unit cell model with an initial void were methodically performed. From the results of those analyses, it was evident that the relationships between normalized void volume fraction and normalized strain by each critical value corresponding to crack initiation were independent of stress-strain relationship of material and stress triaxiality state. Based on this characteristic associated with void growth, damage evolution law was derived. Then, using the damage evolution law, simple and phenomenological ductile damage model reflecting void growth behavior and ductility of material was proposed. To confirm the validation and application of proposed damage model, the damage model was implemented in finite element models and ductile crack growth resistance was simulated for cracked components were performed. Then, the simulated results were compared with experimental ones and it was found that the proposed damage model could accurately predict ductile crack growth resistance and was applicable to ductile crack growth simulation.


2004 ◽  
Vol 449-452 ◽  
pp. 877-880
Author(s):  
Ji Hyun Yoon ◽  
Jun Park ◽  
Soon Dong Park ◽  
Bong Sang Lee ◽  
Eui Pak Yoon

The influence of the microstructure on the J-R ductile crack growth resistance of austenitic stainless steel AISI Type 347 welds was examined. The optical and electron microscopy, and chemical examinations and XRD analysis were conducted on a series of J-R test specimens which were tested at 316oC. It was concluded that the J-R property of the Type 347 weld decreased with increasing the contents of the Nb(C, N) precipitates which were dependant on the carbon contents of the filler metals. The higher δ-ferrite content also deteriorated the J-R property of the Type 347 weld.


Author(s):  
Dong-Yeob Park ◽  
Jean-Philippe Gravel ◽  
C. Hari Manoj Simha ◽  
Jie Liang ◽  
Da-Ming Duan

Shallow-notched single edge-notched tension (SE(T) or SENT) and deep- and shallow-notched single edge-notched bend (SE(B) or SENB) specimens with notches positioned in the weld and the heat-affected zone were tested. Crack-tip opening displacement (CTOD) versus resistance curves were obtained using both a single and double clip gauge consolidated in a SE(T) single-specimen. Up until the peak load the resistance curves from both gauging methods yield approximately the same results; thereafter the curves deviate. Interrupted testing showed that the crack had initiated below 50% of the peak load, and in some cases had propagated significantly prior to reaching the peak load.


Sign in / Sign up

Export Citation Format

Share Document