scholarly journals Non-Invasive Identification of Vulnerability Elements in Existing Buildings and Their Visualization in the BIM Model for Better Project Management: The Case Study of Cuccagna Farmhouse

2020 ◽  
Vol 10 (6) ◽  
pp. 2119 ◽  
Author(s):  
Elsa Garavaglia ◽  
Anna Anzani ◽  
Fabio Maroldi ◽  
Fabio Vanerio

Due to the conjunction between the European and African plates, complex tectonic phenomena take place in the Mediterranean basin. These phenomena cause more or less violent seismic resentments in the countries facing the basin itself. The diffused built historical heritage, characteristic of villages in the Mediterranean countries, is the most vulnerable toward seismic action, and in case of a catastrophic event can cause the loss of human lives. In Italy, the protection of historic buildings is a significant issue, and many regions promoted policies to ensure the safety of the diffused built heritage. Research groups work in synergy to develop procedures for the vulnerability assessment of existing buildings and to define appropriate action plans. This research presents a little or not at all invasive procedure for investigating vulnerability. This procedure is easily replicable and able to support techniques already in use with innovative aspects such as laser scanning of the entire complex and visual identification of vulnerable elements through the BIM (building information modeling) methodology. The procedure applicability is shown in the study of a Milanese farmhouse that has been financed by Fondazione CARIPLO, Bandi 2017 Arte e Cultura-Beni culturali a rischio, Project PRE.CU.R.S.OR.

Author(s):  
C. Castagnetti ◽  
M. Dubbini ◽  
P. C. Ricci ◽  
R. Rivola ◽  
M. Giannini ◽  
...  

The new era of designing in architecture and civil engineering applications lies in the Building Information Modeling (BIM) approach, based on a 3D geometric model including a 3D database. This is easier for new constructions whereas, when dealing with existing buildings, the creation of the BIM is based on the accurate knowledge of the as-built construction. Such a condition is allowed by a 3D survey, often carried out with laser scanning technology or modern photogrammetry, which are able to guarantee an adequate points cloud in terms of resolution and completeness by balancing both time consuming and costs with respect to the request of final accuracy. The BIM approach for existing buildings and even more for historical buildings is not yet a well known and deeply discussed process. There are still several choices to be addressed in the process from the survey to the model and critical issues to be discussed in the modeling step, particularly when dealing with unconventional elements such as deformed geometries or historical elements. <br><br> The paper describes a comprehensive workflow that goes through the survey and the modeling, allowing to focus on critical issues and key points to obtain a reliable BIM of an existing monument. The case study employed to illustrate the workflow is the Basilica of St. Stefano in Bologna (Italy), a large monumental complex with great religious, historical and architectural assets.


Author(s):  
M. Lo Brutto ◽  
E. Iuculano ◽  
P. Lo Giudice

Abstract. The preservation of historic buildings can often be particularly difficult due to the lack of detailed information about architectural features, construction details, etc.. However, in recent years considerable technological innovation in the field of Architecture, Engineering, and Construction (AEC) has been achieved by the Building Information Modeling (BIM) process. BIM was developed as a methodology used mainly for new construction but, given its considerable potential, this approach can also be successfully used for existing buildings, especially for buildings of historical and architectural value. In this case, it is more properly referred to as Historic – or Heritage – Building Information Modeling (HBIM). In the HBIM process, it is essential to precede the parametric modeling phase of the building with a detailed 3D survey that allows the acquisition of all geometric information. This methodology, called Scan-to-BIM, involves the use of 3D survey techniques for the production of point clouds as a geometric “database” for parametric modeling. The Scan-to-BIM approach can have several issues relating to the complexity of the survey. The work aims to apply the Scan-to-BIM approach to the survey and modeling of a historical and architectural valuable building to test a survey method, based on integrating different techniques (topography, photogrammetry and laser scanning), that improves the data acquisition phase. The “Real Cantina Borbonica” (Cellar of Royal House of Bourbon) in Partinico (Sicily, Italy) was chosen as a case study. The work has allowed achieving the HBIM of the “Real Cantina Borbonica” and testing an approach based exclusively on a topographic constraint to merge in the same reference system all the survey data (laser scanner and photogrammetric point clouds).


Author(s):  
H. Macher ◽  
M. Boudhaim ◽  
P. Grussenmeyer ◽  
M. Siroux ◽  
T. Landes

<p><strong>Abstract.</strong> In the context of building renovation, infrared (IR) cameras are widely used to perform the energy audit of buildings. They allow analysing precisely the energetic performances of existing buildings and thermal analyses represent a key step for the reduction of energy consumption. They are also used to assess the thermal comfort of people living or working in a building. Building Information Models (BIM) are widespread to plan the rehabilitation of existing buildings and laser scanning is now commonly used to capture the geometry of buildings for as-built BIM creation. The combination of thermographic and geometric data presents a high number and variety of applications (Lagüela and Díaz-Vilariño, 2016). However, geometric and thermal information are generally acquired separately by different building stakeholders and thermal analyses are performed with independence of geometry. In this paper, the combination of thermal and geometric information is investigated for indoor of buildings. The aim of the project is to create 3D thermographic point clouds based on data acquired by a laser scanner and a thermal camera. Based on these point clouds, BIM models might be enriched with thermal information through the scan-to-BIM process.</p>


2019 ◽  
pp. 142-176
Author(s):  
Fabrizio Ivan Apollonio ◽  
Marco Gaiani ◽  
Zheng Sun

Building Information Modeling (BIM) has attracted wide interest in the field of documentation and conservation of Architectural Heritage (AH). Existing approaches focus on converting laser scanned point clouds to BIM objects, but laser scanning is usually limited to planar elements which are not the typical state of AH where free-form and double-curvature surfaces are common. We propose a method that combines low-cost automatic photogrammetric data acquisition techniques with parametric BIM objects founded on Architectural Treatises and a syntax allowing the transition from the archetype to the type. Point clouds with metric accuracy comparable to that from laser scanning allows accurate as-built model semantically integrated with the ideal model from parametric library. The deviation between as-built model and ideal model is evaluated to determine if feature extraction from point clouds is essential to improve the accuracy of as-built BIM.


2018 ◽  
Vol 33 ◽  
pp. 01047 ◽  
Author(s):  
Vladimir Badenko ◽  
Dmitry Zotov ◽  
Alexander Fedotov

In this article the analysis of gaps in processing of raw laser scanning data and results of bridging the gaps discovered on the base of usage of laser scanning data for historic building information modeling is presented. The results of the development of a unified hybrid technology for the processing, storage, access and visualization of combined laser scanning and photography data about historical buildings are analyzed. The first result of the technology application for the historical building of St. Petersburg Polytechnic University shows reliability of the proposed approaches.


2018 ◽  
Vol 4 (1) ◽  
pp. 27 ◽  
Author(s):  
Jaime Santamarta Martínez ◽  
Javier Mas Domínguez

ResumenLa metodología BIM (Building Information Modelling), ampliamente implantada en el sector de la edificación y de la arquitectura, ha transformado la manera de desarrollar tanto los proyectos como las obras de construcción. Si bien la esencia de esta metodología se basa en la generación de un modelo tridimensional, la visualización de éste a través de dispositivos bidimensionales hace que la experiencia e interacción con el modelo no sea plena. Es por ello que la aparición en el mercado de nuevas tecnologías como la realidad virtual y la realidad aumentada, abren un amplio abanico de posibilidades ligadas al sector de la construcción. En este sentido, en Acciona Ingeniería se ha desarrollado un proyecto piloto en colaboración con Trimble y Microsoft donde a partir de un modelo BIM se ha creado una realidad aumentada basada en hologramas, que permitan recrear una simulación aplicada a la construcciónAbstractThe BIM (Building Information Modeling) methodology, widely implemented in the building and architecture sector, has transformed the way to develop both projects and construction works. Although the essence of this methodology is based on the generation of a three-dimensional model, the visualization of it through two-dimensional devices means that the experience and interaction with the model is not complete. That is why the appearance in the market of new technologies such as virtual reality and augmented reality, open a wide range of possibilities linked to the construction sector. In this sense, Acciona Engineering has developed a pilot project in collaboration with Trimble and Microsoft where, based on a BIM model, an augmented reality based on holograms has been created, allowing to recreate a simulation applied to construction


2021 ◽  
Author(s):  
Yevgeny Milanov ◽  
Vladimir Badenko ◽  
Vladimir Yadykin ◽  
Leonid Perlovsky

Abstract Today there is a gap between a presence of various new equipment on the market which provides streams of various digital data about the environment, in particular in the form of laser scanning point clouds, and the lack of adequate efficient methods and software for information extraction from such data. A solution to the problem of bridging this gap is proposed on the basis of neural modeling field theory and dynamic logic (DL). We present a DL-based method of extracting and analyzing information from hybrid point clouds, which include not only spatial coordinates and intensity, but also the color of each point, and can be from multiple sources including terrestrial, mobile and airborne laser scanning data. The proposed method is significant for creating a fundamental theoretical basis for new application algorithms and software for many new applications, including building information modeling, “smart city” environment, etc. The proposed method is fairly new to solving various problems related to extracting semantically rich information from a nontraditional type of digital data, especially hybrid point clouds created from laser scanning. This method will allow to significantly expand the existing boundaries of knowledge in the field of extraction and analysis of information from various digital data, because neural modeling field theory and DL can improve the performance of relevant calculations and close the existing gap in analysis of digital images.


2019 ◽  
pp. 900-934
Author(s):  
Fabrizio Ivan Apollonio ◽  
Marco Gaiani ◽  
Zheng Sun

Building Information Modeling (BIM) has attracted wide interest in the field of documentation and conservation of Architectural Heritage (AH). Existing approaches focus on converting laser scanned point clouds to BIM objects, but laser scanning is usually limited to planar elements which are not the typical state of AH where free-form and double-curvature surfaces are common. We propose a method that combines low-cost automatic photogrammetric data acquisition techniques with parametric BIM objects founded on Architectural Treatises and a syntax allowing the transition from the archetype to the type. Point clouds with metric accuracy comparable to that from laser scanning allows accurate as-built model semantically integrated with the ideal model from parametric library. The deviation between as-built model and ideal model is evaluated to determine if feature extraction from point clouds is essential to improve the accuracy of as-built BIM.


Sign in / Sign up

Export Citation Format

Share Document