scholarly journals Supply Systems of Non-Thermal Plasma Reactors. Construction Review with Examples of Applications

2020 ◽  
Vol 10 (9) ◽  
pp. 3242 ◽  
Author(s):  
Henryka Danuta Stryczewska

A review of the supply systems of non-thermal plasma reactors (NTPR) with dielectric barrier discharge (DBD), atmospheric pressure plasma jets (APPJ) and gliding arc discharge (GAD) was performed. This choice is due to the following reasons: these types of electrical discharges produce non-thermal plasma at atmospheric pressure, the reactor design is well developed and relatively simple, the potential area of application is large, especially in environmental protection processes and biotechnologies currently under development, theses reactors can be powered from similar sources using non-linear transformer magnetic circuits and power electronics systems, and finally, these plasma reactors and their power supply systems, as well as their applications are the subject of research conducted by the author of the review and her team from the Department of Electrical Engineering and Electrotechnology of the Lublin University of Technology, Poland.

Author(s):  
Henryka Danuta Stryczewska ◽  
Tomasz Jakubowski ◽  
Stanisław Kalisiak ◽  
Tomasz Giżewski ◽  
Joanna Pawłat

AbstractRecently, many different plasma sources are being investigated for exhaust gases treatment, odor abatement, VOC removal, soil conditioning, surface decontamination or tissue disinfection and sterilization. Among many different plasma reactors investigated in laboratories, gliding arc discharges (GAD), dielectric barrier discharges (DBD), pulsed discharges (PD), atmospheric pressure glow discharges (APGD) and atmospheric pressure plasma jets (APPJ) seem to be the most promising for high pressure low temperature applications. They can be designed as multi-electrodes’ high power system that can be used in environment protection processes, like decontamination of large surfaces and treatment of large volume of polluted gases, as well as small size and low power devices for biomedical applications, like plasma healing, disinfection and sterilization. Paper presents review of power supply systems for cold plasma reactors. Dielectric Barrier Discharge (DBD), Gliding Arc Discharge (GAD) and atmospheric pressure plasma jet (APPJ) reactors with their supply systems have been discussed from the point view of their characteristics, possibility to control power to the discharge and efficiency. Taking into account the plasma reactor characteristics and nature (nonlinear resistive and/or capacitive) different solutions of power suppliers have been presented: transformer type, AC/DC/AC inverter, RF-frequency system and frequency resonant inverter.


2012 ◽  
Vol 60 (6) ◽  
pp. 959-964 ◽  
Author(s):  
Pankaj Attri ◽  
Pannuru Venkatesu ◽  
Nagendra Kaushik ◽  
Yong Gyu Han ◽  
Chul Joo Nam ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3372
Author(s):  
Azadeh Barjasteh ◽  
Zohreh Dehghani ◽  
Pradeep Lamichhane ◽  
Neha Kaushik ◽  
Eun Ha Choi ◽  
...  

Various reactive oxygen and nitrogen species are accompanied by electrons, ultra-violet (UV) radiation, ions, photons, and electric fields in non-thermal atmospheric pressure plasma. Plasma technology is already used in diverse fields, such as biomedicine, dentistry, agriculture, ozone generation, chemical synthesis, surface treatment, and coating. Non-thermal atmospheric pressure plasma is also considered a promising technology in environmental pollution control. The degradation of organic and inorganic pollutants will be massively advanced by plasma-generated reactive species. Various investigations on the use of non-thermal atmospheric pressure plasma technology for organic wastewater purification have already been performed, and advancements are continuing to be made in this area. This work provides a critical review of the ongoing improvements related to the use of non-thermal plasma in wastewater control and outlines the operational principle, standards, parameters, and boundaries with a special focus on the degradation of organic compounds in wastewater treatment.


2011 ◽  
Vol 109 (12) ◽  
pp. 123302 ◽  
Author(s):  
J. S. Sousa ◽  
K. Niemi ◽  
L. J. Cox ◽  
Q. Th. Algwari ◽  
T. Gans ◽  
...  

2014 ◽  
Vol 11 (11) ◽  
pp. 1010-1017 ◽  
Author(s):  
Seoul Hee Nam ◽  
Hyun Wook Lee ◽  
Jin Woo Hong ◽  
Hae June Lee ◽  
Gyoo Cheon Kim

Sign in / Sign up

Export Citation Format

Share Document