scholarly journals Classification of Tactile and Motor Velocity-Evoked Hemodynamic Response in Primary Somatosensory and Motor Cortices as Measured by Functional Near-Infrared Spectroscopy

2020 ◽  
Vol 10 (10) ◽  
pp. 3381
Author(s):  
Mohsen Hozan ◽  
Jacob Greenwood ◽  
Michaela Sullivan ◽  
Steven Barlow

Functional near-infrared spectroscopy (fNIRS) is an emerging technique in studying cerebral hemodynamics; however, consensus on the analysis methods and the clinical applications has yet to be established. In this study, we demonstrate the results of a pilot fNIRS study of cerebral hemodynamic response (HR) evoked by pneumotactile and sensorimotor stimuli on the dominant hand. Our goal is to find the optimal stimulus parameters to maximally evoke HR in the primary somatosensory and motor cortices. We use a pulsatile pneumatic array of 14 tactile cells that were attached to the glabrous surface of the dominant hand, with a patterned stimulus that resembles saltation at three distinct traverse velocities [10, 25, and 45 cm/s]. NIRS optodes (16 sources; 20 detectors) are bilaterally and symmetrically placed over the pre-and post-central gyri (M1 and S1). Our objective is to identify the extent to which cerebral HR can encode the velocity of the somatosensory and/or motor stimuli. We use common spatial pattern for feature extraction and regularized-discriminant analysis for classifying the fNIRS time series into velocity classes. The classification results demonstrate discriminatory features of the fNIRS signal from each distinct stimulus velocity. The results are inconclusive regarding the velocity which evokes the highest intensity of hemodynamic response.

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2362 ◽  
Author(s):  
Alexander E. Hramov ◽  
Vadim Grubov ◽  
Artem Badarin ◽  
Vladimir A. Maksimenko ◽  
Alexander N. Pisarchik

Sensor-level human brain activity is studied during real and imaginary motor execution using functional near-infrared spectroscopy (fNIRS). Blood oxygenation and deoxygenation spatial dynamics exhibit pronounced hemispheric lateralization when performing motor tasks with the left and right hands. This fact allowed us to reveal biomarkers of hemodynamical response of the motor cortex on the motor execution, and use them for designing a sensing method for classification of the type of movement. The recognition accuracy of real movements is close to 100%, while the classification accuracy of imaginary movements is lower but quite high (at the level of 90%). The advantage of the proposed method is its ability to classify real and imaginary movements with sufficiently high efficiency without the need for recalculating parameters. The proposed system can serve as a sensor of motor activity to be used for neurorehabilitation after severe brain injuries, including traumas and strokes.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yan Zhang ◽  
Xin Liu ◽  
Dan Liu ◽  
Chunling Yang ◽  
Qisong Wang ◽  
...  

The performance of functional near-infrared spectroscopy (fNIRS) is sometimes degraded by the interference caused by the physical or the systemic physiological activities. Several interferences presented during fNIRS recordings are mainly induced by cardiac pulse, breathing, and spontaneous physiological low-frequency oscillations. In previous work, we introduced a multidistance measurement to reduce physiological interference based on recursive least squares (RLS) adaptive filtering. Monte Carlo simulations have been implemented to evaluate the performance of RLS adaptive filtering. However, its suitability and performance on human data still remain to be evaluated. Here, we address the issue of how to detect evoked hemodynamic response to auditory stimulus using RLS adaptive filtering method. A multidistance probe based on continuous wave fNIRS is devised to achieve the fNIRS measurement and further study the brain functional activation. This study verifies our previous findings that RLS adaptive filtering is an effective method to suppress global interference and also provides a practical way for real-time detecting brain activity based on multidistance measurement.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Seung Hyun Lee ◽  
Sang Hyeon Jin ◽  
Jinung An

Abstract The human brain is lateralized to dominant or non-dominant hemispheres, and controlled through large-scale neural networks between correlated cortical regions. Recently, many neuroimaging studies have been conducted to examine the origin of brain lateralization, but this is still unclear. In this study, we examined the differences in brain activation in subjects according to dominant and non-dominant hands while using chopsticks. Fifteen healthy right-handed subjects were recruited to perform tasks which included transferring almonds using stainless steel chopsticks. Functional near-infrared spectroscopy (fNIRS) was used to acquire the hemodynamic response over the primary sensory-motor cortex (SM1), premotor area (PMC), supplementary motor area (SMA), and frontal cortex. We measured the concentrations of oxy-hemoglobin and deoxy-hemoglobin induced during the use of chopsticks with dominant and non-dominant hands. While using the dominant hand, brain activation was observed on the contralateral side. While using the non-dominant hand, brain activation was observed on the ipsilateral side as well as the contralateral side. These results demonstrate dominance and functional asymmetry of the cerebral hemisphere.


2018 ◽  
Vol 26 (2) ◽  
pp. 79-86 ◽  
Author(s):  
Gihyoun Lee ◽  
Seung Hyun Lee ◽  
Sang Hyeon Jin ◽  
Jinung An

Functional near infrared spectroscopy can measure hemodynamic signals, and the results are similar to functional magnetic resonance imaging of blood-oxygen-level-dependent signals. Thus, functional near infrared spectroscopy can be employed to investigate brain activity by measuring the absorption of near infrared light through an intact skull. Recently, a general linear model, which is a standard method for functional magnetic resonance imaging, was applied to functional near infrared spectroscopy imaging analysis. However, the general linear model fails when functional near infrared spectroscopy signals retain noise, such as that caused by the subject's movement during measurement. Although wavelet-based denoising and hemodynamic response function smoothing are popular denoising methods for functional near infrared spectroscopy signals, these methods do not exhibit impressive performances for very noisy environments and a specific class of noise. Thus, this paper proposes a new denoising algorithm that uses multiple wavelet shrinkage and a multiple threshold function based on a hemodynamic response model. Through the experiments, the performance of the proposed algorithm is verified using graphic results and objective indexes, and it is compared with existing denoising algorithms.


Sign in / Sign up

Export Citation Format

Share Document