scholarly journals The Value and Optimal Sizes of Energy Storage Units in Solar-Assist Cogeneration Energy Hubs

2020 ◽  
Vol 10 (14) ◽  
pp. 4994
Author(s):  
Xiaotao Chen ◽  
Yang Si ◽  
Chengkui Liu ◽  
Laijun Chen ◽  
Xiaodai Xue ◽  
...  

Cogeneration is becoming increasingly popular in building and community energy systems with demands on electricity and heat, which is suitable for residential and industrial use in remote areas. This paper considers a stand-alone cogeneration energy hub. The electrical and thermal energies are produced by a combined heat and power (CHP) unit, photovoltaic panels, and a solar thermal collector. Since solar units generate no electricity and heat during the night, energy storage units which shift demands over time can promote the usage of solar energy and reduce the fuel cost of the CHP unit. This paper proposes a method to retrieve the optimal operation cost as an explicit function in the capacity parameters of electric and thermal energy storage units, reflecting the value of energy storage in the cogeneration energy hub. The capacity parameter set is divided into a collection of polyhedrons; on each polyhedron, the optimal value is an affine function in the capacity parameters. Furthermore, the optimal sizes of system components are discussed. The capacity of the CHP unit is determined from a linear program, ensuring supply adequacy; the capacities of solar generation and energy storage units are calculated based on the cost reduction and the budget. Case studies demonstrate the effectiveness of the proposed method.

2021 ◽  
Vol 13 (12) ◽  
pp. 6776
Author(s):  
Umar Salman ◽  
Khalid Khan ◽  
Fahad Alismail ◽  
Muhammad Khalid

Electrical energy and power demand will experience exponential increase with the rise of the global population. Power demand is predictable and can be estimated based on population and available historical data. However, renewable energy sources (RES) are intermittent, unpredictable, and environment-dependent. Interestingly, microgrids are becoming smarter but require adequate and an appropriate energy storage system (ESS) to support their smooth and optimal operation. The deep discharge caused by the charging–discharging operation of the ESS affects its state of health, depth of discharge (DOD), and life cycle, and inadvertently reduces its lifetime. Additionally, these parameters of the ESS are directly affected by the varying demand and intermittency of RES. This study presents an assessment of battery energy storage in wind-penetrated microgrids considering the DOD of the ESS. The study investigates two scenarios: a standalone microgrid, and a grid-connected microgrid. The problem is formulated based on the operation cost of the microgrid considering the DOD and the lifetime of the battery. The optimization problem is solved using non-linear programming. The scheduled operation cost of the microgrid, the daily scheduling cost of ESS, the power dispatch by distributed generators, and the DOD of the battery storage at any point in time are reported. Performance analysis showed that a power loss probability of less than 10% is achievable in all scenarios, demonstrating the effectiveness of the study.


Sign in / Sign up

Export Citation Format

Share Document