scholarly journals Stability of Extended Earth Berm for High Landfill

2020 ◽  
Vol 10 (18) ◽  
pp. 6281
Author(s):  
Haoran Jiang ◽  
Xiaowen Zhou ◽  
Ziwei Xiao

This study presents a stability analysis of an extended berm reinforced by geotextiles, with a steep slope of 1V:1.1H (vertical: horizontal). Finite element (FE) analyses were carried out to explore the failure mechanism and factor of safety (FOS) of the berm, on which the effect of the strength of geotextiles, leachate level, and anti-slide pile arrangement located at the toe of the berm were considered. It was found that: (1) failure surfaces developed along the interface between the new and the existing berms; (2) the FOS decreased as the leachate increased, and an FOS value of 1.42 could be obtained if the leachate level was controlled at a height of 20 m; (3) the tensile force of geotextiles was far lower than the available strength, which suggested that the geotextile had enough of a safety reserve; and (4) one row of longer piles at the toe of the berm performed better than two rows of shorter piles if the total length of piles was the same. The design and analysis of this project can be used as a reference for landfill expansion. Especially for a site condition with limited space, a geosynthetic-reinforced soil (GRS) berm is a safe, reliable and promising alternative.

2012 ◽  
Vol 188 ◽  
pp. 60-65
Author(s):  
Fu Lin Li ◽  
Fang Le Peng

The combined effects of the rate-dependent behavior of both the backfill soil and the geosynthetic reinforcement have been investigated, which should be attributed to the viscous property of material. A nonlinear finite element method (FEM) analysis procedure based on the Dynamic Relaxation method was developed for the geosynthetic-reinforced soil retaining wall (GRS-RW). In the numerical analysis, both the viscous properties of the backfill and the reinforcement were considered through the unified nonlinear three-component elastic-viscoplastic model. The FEM procedure was validated against a physical model test on geosynthetic-reinforced soil retaining wall with granular backfill. Extensive finite-element analyses were carried out to investigate the tensile force distributions in geosynthetic reinforcement of geosynthetic-reinforced soil retaining wall under the change of loading rate. It is found from the analyses that the presented FEM can well simulate the rate-dependent behavior of geosynthetic-reinforced soil retaining wall and the tensile force of geosynthetic reinforcement arranged in retaining wall.


2013 ◽  
Vol 311 ◽  
pp. 550-555
Author(s):  
Sao Jeng Chao ◽  
Howard Hwang ◽  
An Cheng

Geosynthetic reinforced soil retaining structures (GRSRS) become popular in the recent decades because of the advantages of easy construction, consuming waste soil in the construction site, supreme seismic resistance ability, etc. For the reason that clayey soils cover a wide area in Taiwan, clayey soils are often used as the backfilled materials for the GRSRS. Besides, during the 921 Chi-Chi Earthquake, a few GRSRS were destroyed. Consequently, the dynamic analysis of GRSRS turns out to be another significant research topic. In this paper, we investigate the creep behavior and the seismic response of model GRSRS by using finite element simulation. The predicted results indicated that the tensile stress of the reinforcement is increasing with time as well as under earthquakes. The tendency of the incremental tensile forces due to the clayey backfill soil creep behavior is significant in the initial stage but slows down with time goes on. Observing the predicted results of the GRSRS under different earthquake scales, it is found that the acceleration variations and the tensile force distribution of the reinforcement layers can not be evaluated with a simple factor.


Author(s):  
Arshia Taeb ◽  
Phillip S.K. Ooi

When subjected to ambient daily temperature fluctuations, a 109.5 ft-long geosynthetic reinforced soil integrated bridge system (GRS-IBS) was observed to undergo cyclic straining of the superstructure. The upper and lower reaches of the superstructure experienced the highest and lowest strain fluctuation, respectively. These non-uniform strains impose not only axial loading of the superstructure but also bending. Pure axial loading in a horizontal superstructure will cause the footings to slide. However, bending in the superstructure will cause the footings to rotate thereby inducing cyclic fluctuations of the vertical pressure beneath the footing and also lateral pressure behind the end walls. Measured vertical footing pressure closest to the stream experienced the greatest daily pressure fluctuation (≈ 2,500–3,000 psf), while that nearest the end wall experienced the least. The toe pressure fluctuations seem rather large. That these large vertical pressure fluctuations are observed in a tropical climate like Hawaii when no other GRS-IBS in temperate regions has reported the same (or perhaps higher fluctuation) is indeed surprising. The larger these pressures are, the greater the likelihood of inducing cyclic-induced deformations of the GRS abutment. A finite element analysis of the same GRS-IBS was performed by applying an equivalent temperature and gradient to the superstructure over the coldest and hottest periods of a day to see if the field measured values of pressures are reasonable and verifiable, which indeed they were. This methodology is novel in the sense that the effects of axial load and bending of the superstructure are simulated using measured strains rather than measured temperatures.


Sign in / Sign up

Export Citation Format

Share Document